La verdad sobre la anécdota de Rutherford, Bohr y el barómetro o un tributo al Profesor Calandra

Dibujo20150823 angels on a pin - alexander calandra - 1968

Perdiendo el tiempo un rato, para descansar la mente, me dirigí a El Tamiz, blog que recomiendo, que ha iniciado una serie de entradas sobre los Premios Nobel de Física y Química. En la primera “Premios Nobel – Física 1901 (Wilhelm Röntgen),” me he encontrado con un comentario recomendando a Pedro que al llegar a Sir Rutherford, “no se olvide de la anécdota de Rutherford del “me enseñaron a pensar”!” No me ha quedado otro remedio que recordar a Pedro, quien seguramente ya lo sabrá, que la anécdota no es de Rutherford sino de Alexander Calandra.

La anécdota es famosísima, tanto en inglés como en español. Para los pocos que no la conozcan podéis recurrir a la versión de La Insignia “La anécdota de Bohr,” que llegó a portada en Menéame. Pero hay cientos de versiones por no decir miles, basta con pinchar en Google. Normalmente se afirma que la anécdota la contaba Rutherford, sobre uno de sus alumnos Bohr. A veces que era un físico insigne sin nombre y apellidos. Por supuesto, en algunos casos el padre de la anécdota es citado como debe ser. Sobre gustos no hay nada escrito. Internet es así.

[PS 23 Ago 2015] He añadido la imagen que abre esta entrada, que he obtenido gracias a Martín Monteiro ‏@fisicamartin (“una copia de la página de la revista con la primera versión publicada”). ¡Gracias Martín!

dibujo20090114alexandercalandraLa verdadera historia de la “anécdota del barómetro” es que fue “creada” por Alexander Calandra (el tipo de la foto), profesor de física fallecido el 8 de marzo de 2006, a los 95 años, ver obituario. Trabajó gran parte de su vida en la Universidad de Washington en St. Louis, EE.UU.

Calandra está considerado un gran profesor y un gran docente (aunque no destacó como investigador). Trabajó en múltiples comités sobre docencia y recibió múltiples premios por su labor, entre ellos, el prestigioso premio Robert A. Millikan de la AAPT (American Association of Physics Teachers), que se concede a los mejores docentes de Física (que sean miembros de dicha asociación). Tenéis una breve biografía en “Millikan award for 1979,” The Physics Teacher 17: 498-498, November 1979 . Su discurso de recepción del premio fue “The Art of  Teaching Physics,” desafortunadamente no he encontrado copia escrita de dicha conferencia, que tuvo que ser muy interesante.

Calandra publicó esta anécdota (inventada por él) en su libro “The Teaching of Elementary Science and Mathematics” Washington University Press, St. Louis, 1961. No he encontrado ningún enlace a dicho libro en la web. La anécdota se popularizó tras su aparición en el semanario “The Saturday Review” (p.60, Dec. 21, 1968 ), con el título “Angels on the Head of a Pin. A Modern Parable”. El editor hizo algún que otro cambio respecto al libro. Como veis, empieza de la forma más famosa en inglés “Some time ago I received a call from a colleague who asked if I would be the referee on the grading of an examination question.”

La anécdota se ha republicado cientos de veces, con multitud de variantes, incluyendo la variante Bohr – Rutherford. A veces sorprende hasta dónde se ha llegado a publicar (Google Books es una fuente de muchos ejemplos). Uno curioso, el libro de Peter van der Linden, “Expert C Programming: Deep C Secrets“, Prentice Hall, 1994 .

Una nota histórica: Calandra tras obtener su doctorado en 1940 fue asistente de Enrico Fermi en la Universidad de Chicago (en la época en la que Fermi realizó la primera reacción en cadena (explosión) nuclear). Se dice que la anécdota fue contada por Rutherford, quien murió en 1937. La única posibilidad de que Calandra no se inventara la historia sería que Fermi se la contara. No lo creo así. Si no, ¿por qué él nunca dijo en vida que él no fuera el autor?

En España, donde cada día se debate más sobre Docencia vs Investigación, muchas veces como “charla de tomar un café” y no en los foros en los que tendría que hacerse, donde se suele “minuspreciar” (expresión malagueña para “minusvalorar”) la docencia con relación a la investigación, una figura como la de Calandra (gran profesor, entendido como gran docente) merece la máxima consideración y nuestro recuerdo a su mérito, y que hayáis leido esto hasta este punto.

Permitidme un escaneo “pirata” de A. Calandra, “What is physics,” American Journal of Physics 38: 126, 1970 .

 dibujo20090114whatisphysicscalandra



19 Comentarios

  1. Ahora veo, me costaba creer que Bhor fuera tan estupido, pues la pregunta dice como calcular la altura de un edificio con un barometro, no dice con un barometro y una cuerda o con un barometro o cualquier cosa mas, sino solo con un barometro …..lo ven ?, ademas de aprender a pensar se tiene que aprender a leer Gracias por la aclaracion …

    1. Cierto, solo dice con la ayuda de un barómetro, lo cual le deja montones y montones de posibilidades a el alumno para responder, parece ser que el que no sabe leer eres tu Oscar

  2. Cuando existe una historia que permite inspirar a millones de personas, que permite maneras diferentes de pensar, que construye, que motiva positivamente, pregunto ¿ Cuál es el motivador de querer demostrar que no ha sido real? Por qué el deseo de hechar por tierra el fin, el propósito del cuento que es el de inspirar positivamente a nuevas generaciones de estudiantes que buscan con denuedo modelos en los cuales inspirarse? Si su motivador no es destruir, ¿ pues no ha debido mejor callarse? Atentamente.

  3. Siendo precisos, la primera respuesta que da el estudiante no es correcta. No se puede aplicar directamente la fórmula s=0,5at² , porque el observador no puede medir el tiempo de caída, sino el tiempo de caída más el tiempo que el sonido del choque del barómetro contra el suelo tarda en llegar desde el suelo hasta la azotea. La respuesta correcta sería:
    Tiempo medido t=t₁ +t ₂
    t₁ =tiempo de llegada al suelo t ₂ = tiempo del sonido en llegar del suelo a la azotea, donde está el observador.
    h= altura del edificio
    Movimiento 1: caída libre del barómetro, cuando llega al suelo la posición es cero, luego 0=h-1/2 g t₁²
    Movimiento 2: movimiento rectilíneo y uniforme de la onda sonora, del suelo al edificio. Cuando llega arriba la posición de la onda coincide con la altura del edificio, es decir h=340 t₂
    Tenemos pues tres ecuaciones con tres incógnitas h, t ₁ y t ₂ , ya que t es un dato conocido, pues es el tiempo medido. Si resolvemos el sistema podemos hallar h:
    0=h-1/2 g t₁² h=340 t₂ y t=t₁ +t ₂

    Saludos.

  4. Aunque cabe la posibilidad de que no escuche el golpe, sino que lo observe directamente. En ese caso el error cometido en la resolución del problema es mínimo, ya que la onda de luz que le llega al observador y que le indica que se ha producido el choque viaja a una velocidad elevadísima, con lo que t₂ es prácticamente cero, y por tanto la utilización de s=1/2 a t² es una muy buena aproximación, y en consecuencia una respuesta correcta.
    🙂

  5. Me parece muy bien que usted rectifique la autoría de la anécdota. Desgraciadamente siempre pasa lo mismo en ciencia: el más avispado se lleva el mérito. es como la forma de calcular el consumo de oxígeno que se atribuye a Haldane, cuando fueron Geppert y Zunt los que la pensaron y desarrollaron. sin embargo, se conoce como transformación de Haldane y no me parece justo.

Deja un comentario

Por Francisco R. Villatoro
Publicado el ⌚ 14 enero, 2009
Categoría(s): ✓ Ciencia • Docencia • Física • General • Historia • Libros • Personajes • Physics • Science
Etiqueta(s): ,