La entropía termodinámica, la entropía de von Neumann y la segunda ley de la termodinámica en sistemas cuánticos mesoscópicos

¿Se puede introducir una entropía termodinámica para un sistema cuántico mesoscópico? Sí. ¿Qué relación hay entre la entropía de von Neumann y dicha entropía termodinámica? No son iguales cuando el sistema está acoplado fuertemente. ¿Es válida la segunda ley de la termodinámica? Para la entropía termodinámica sí, pero para la entropía de von Neumann no. Estas cuestiones pueden parecer baladíes pero han corrido muchos ríos de tinta discutiéndolas desde diferentes enfoques. La figura la he extraído de un artículo reciente que me ha hecho recordar lo obvio, que no por ampliamente conocido y reiterado, ha de ser obviado cuando se discuten este tipo de cuestiones. La figura compara la entropía (termodinámica) de un conjunto de osciladores armónicos cargados (curva en negro), con la entropía (termódinámica) de dichos osciladores acoplados por un campo magnético externo (curva en rojo) y con la entropía de von Neumann para dichos osciladores (curva en azul). La entropía de von Neumann se desvía de la entropía termodinámica para un sistema mesoscópico que esté entralazado con su entorno. En el régimen de acoplamiento débil, ambas entropías se pueden identificar, pero para acoplamiento fuerte, son muy diferentes. La entropía de von Neumann no tiene por qué ser nula en el cero absoluto de temperaturas y por tanto no puede ser utilizada para definir una temperatura del sistema. Sólo la entropía termodinámica permite hacerlo. El uso de la entropía de von Neumann para afirmar que la física de los sistemas cuánticos mesoscópicos viola la segunda ley de la termodinámica es un sinsentido en todos los sentidos. Lo que siempre hay que tener claro es que la entropía termodinámica es la que debe ser usada para verificar la segunda ley de la termodinámica y que la entropía de von Neumann tiene otros usos (medir la cantidad total de información cuántica en el sistema o cuantificar el entrelazamiento entre sus estados). Como ya hemos dicho en múltiples ocasiones en este blog, lo obvio, si bueno, dos veces obvio. El artículo en cuestión es Malay Bandyopadhyay (Universidad de Toronto, Canadá), “Does the second law hold in the quantum regime?,” Physica Scripta 81: 065004, 19 mayo 2010 [artículo de acceso gratis], que me ha hecho recordar G. W. Ford, R. F. O’Connell, “A Quantum Violation of the Second Law?,” Physical Review Letters 96: 020402, 18 January 2006 [preprint en ArXiv]. Más información, valga la redundancia, sobre información, información cuántica y entropía de von Neumann en Charles H. Bennett, David P. DiVincenzo, “Información y computación cuántica,” Nature 404: 247-255, 2000 (traducción y revisión de Adán Cabello, 2002).

Las cuatro leyes de la termodinámica describen de forma fenomenológica los sistemas físicos macroscópicos y permiten determinar sus cambios de volumen, presión y temperatura. La ley cero introduce el concepto de equilibrio térmico y permite definir el concepto de temperatura. La primera ley es la ley de la conservación de la energía. La segunda ley introduce el concepto de entropía y que en un sistema fuera del equilibrio la entropía crece asintóticamente hasta alcanzar un valor máximo constante en equilibrio. Finalmente, la tercera ley afirma que conforme la temperatura se acerca al cero absoluto, la entropía del sistema se aproxima a un valor mínimo constante. Es decir, la entropía depende de la temperatura y se puede definir el concepto de cero absoluto. Estas leyes para sistemas físicos macroscópicos se pueden deducir/entender en el contexto de la mecánica estadística (clásica) y la mecánica estadística cuántica. En un sistema cuántico (microscópico) con muy pocos grados de libertad, estas leyes y estos conceptos termodinámicos pierden su significado. Pero, ¿qué pasa en un sistema (cuántico) mesoscópico?

La entropía de von Neumann para muchos sistemas cuánticos mesoscópicos no cumple con la segunda ley de la termodinámica. Sin embargo, para todo sistema mesoscópico se puede definir una entropía termodinámica, por ejemplo a partir de su energía libre, que sí cumple con la segunda ley de la termodinámica (el artículo de Ford y O’Connell en PRL nos indica una posible manera de hacerlo). En sistemas mesoscópicos débilmente acoplados con el entorno las entropías de von Neumann y termodinámica coinciden, pero en sistemas fuertemente acoplados con el entorno no es así. Bandyopadhyay nos ilustra estas cuestiones utilizando dos ejemplos, un sistema de osciladores cargados acoplado a un baño térmico sometido, por un lado, a un campo magnético externo y, por otro lado, a un campo eléctrico rápidamente oscilatorio. Cuando el acoplamiento es finito, aunque sea pequeño, el estado fundamental (el de mínima energía) del sistema acoplado no coincide con el sistema libre, siendo la diferencia proporcional a la energía de acoplamiento. Este exceso de energía en el cero absoluto de temperaturas, lleva a inducir erróneamente que se observa una violación cuántica de la segunda ley de la termodinámica (por ejemplo, gracias a transiciones por efecto túnel desde el estado fundamental con acoplamiento al estado fundamental libre). Esta violación es muy pequeña, por supuesto, pero es una violación al fin y al cabo. Una violación que permitiría un perpetuum mobile cuántico, permitiría un proceso cíclico para extraer energía “gratis” del entorno cuántico. Extraer energía “gratis” del vacío cuántico es un sueño de novela de ciencia ficción y quizás en dicho reino permanecerá siempre.

Entropía termodinámica, entropía de von Neumann para la matriz de densidad reducida para un sistema cuántico, entropía de la información de Shannnon, entropía en agujeros negros, etc. Muchas entropías que a veces coinciden pero que a veces no lo hacen. Muchas entropías con las que tenemos que lidiar con extremo cuidado para no abusar de su uso, para no violar el contexto en el que son aplicables. Contextos que no son disjuntos, pero tampoco coincidentes.

1 Comentario

Participa Suscríbete

Antonio Alfonso FausAntonio Alfonso Faus

El tema de la entropía es , como mínimo, fascinante. A mi me sale que la entropía del Universo es del orden de 10 elevado a 122, aproximadamente. Es decir que aumenta con el cuadrado de la edad del Universo (medida en “tics” de Planck), con el cuadrado del tiempo.Entendida como “número de partes de que consta un sistema” supone que se están creando partículas de alguna clase (posiblemente con energias de distinto signo de forma que la energia total se conserva). Todo un reto para la cosmología……

Antonio

Deja un comentario

Tu email nunca será mostrado o compartido. No olvides rellenar los campos obligatorios.

Obligatorio
Obligatorio
Obligatorio

Puedes usar las siguientes etiquetas y atributos HTML: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>