La explicación del teorema que sacudió los cimientos cuánticos

Lo prometido es deuda. Varios lectores me han pedido una explicación del teorema descrito en la traducción de Kanijo, “Un teorema sacude los cimientos cuánticos,” Ciencia Kanija, Nov. 19, 2011 [original de Eugenie Samuel Reich, "Quantum theorem shakes foundations," Nature News, 17 November 2011]. El teorema PBR en cuestión se ha publicado en el artículo de Matthew F. Pusey, Jonathan Barrett, Terry Rudolph, “The quantum state cannot be interpreted statistically,” ArXiv, Submitted on 14 Nov 2011.

Un teorema demostrado por físicos y el mismo teorema demostrado por matemáticos son dos cosas muy diferentes, en la forma que no en el contenido. Los matemáticos aclaran todas y cada una de las hipótesis utilizadas y su terminología es unívoca. Sin embargo, los físicos asumen muchas hipótesis de facto (para qué repetir “lo que todo el mundo sabe”) y la terminología depende de la escuela de los físicos que publican la demostración (cada escuela le llama de forma algo diferente a cada cosa). Por todo ello el teorema PBR ha generado bastantes malentendidos, incluso entre los propios físicos. La palabra “estadística” que aparece en el título del artículo genera muchas dudas y lo demuestra la primera frase del artículo de Reich (traducido por Kanijo): “La función de onda es un objeto físico real, después de todo, dicen los investigadores.” ¿Qué significa “real” en esta frase? Trataré de aclarar un poco el artículo técnico pues lo que ahora mismo tienes en mente que significa “estadístico” y “real” en el contexto de las interpretaciones de la mecánica cuántica casi con toda seguridad difiere de lo que utilizan los autores del artículo PBR (salvo que seas experto en estas lides, en cuyo caso no tienes que leer el resto de esta entrada, pues ya sabes lo que voy a contar).

Para evitar malentendidos, quisiera aclarar que yo no estoy en posesión de la verdad y que voy a dar mi opinión sobre un artículo técnico. Si prefieres la opinión de un experto puedes empezar leyendo el magnífico artículo de Matt Leifer, “Can the quantum state be interpreted statistically?,” 20 November, 2011. Leifer, tras explicar las diferencias entre las interpretaciones ontológica y epistemológica de la mecánica cuántica, describe en cierto detalle la demostración del teorema PBR. Una visión más pragmática, él dice más operacional, la puedes encontrar en Scott Aaronson, “The quantum state cannot be interpreted as something other than a quantum state,” Shtetl-Optimized, November 19th, 2011. Finamente, la parte bayesiana de la demostración la resume bien Steve Hsu, “Is the wavefunction real?,” Information Processing, November 18, 2011.

Qué quieren demostrar los autores del artículo PRB

La introducción del artículo PBR incluye sendas citas de Albert Einstein y Edwin T. Jaynes que aclaran su objetivo. Los autores quieren resolver la dicotomía que existe entre la interpretación ontológica y la epistemológica de la función de onda, o en sus propias palabras la dicotomía entre si los “estados cuánticos” que representa la función de onda son “estados de realidad” o son “estados de conocimiento.” A mí me parece inapropiado, por las connotaciones que sugiere, pero los autores usan el término “conocimiento estadístico.” Me parece inapropiado porque la palabra “estadístico” lleva a reminiscencias de una teoría de variables ocultas o de una teoría clásica precuántica, cuando en el artículo los autores utilizan en todo momento la mecánica cuántica convencional en el marco de la interpretación de Conpenhague y su interpretación probabilística basada en la regla de Born.

La función de onda cuántica representa toda la información (“propiedades físicas medibles”) que un observador tiene sobre un sistema cuántico. Gracias a la función de onda se puede determinar la probabilidad de obtener cualquier resultado posible para la medida experimental de un observable concreto. Simplificando matices de carácter técnico, hay dos visiones contrapuestas sobre como interpretar esta información (sobre como interpretar la función de onda):

(1) La visión “estadística” (así la llaman en PBR, aunque es más apropiado llamarla visión epistemológica) afirma que la función de onda contiene la información que un observador posee sobre un sistema cuántico; diferentes observadores pueden poseer una información diferente sobre el mismo sistema cuántico. Parafraseando a Einstein, la función de onda describe el “estado mental” del observador en relación al sistema físico; para Einstein se trata de una descripción “incompleta” del sistema físico real, pero muchos físicos cuánticos afirman incluso que el observador que tiene estos “estados mentales” debe ser consciente.

(2) La visión “realista” (así la llaman en PBR, aunque es más apropiado llamarla visión ontológica) afirma que la función de onda contiene la información cognoscible o que se puede conocer sobre un sistema cuántico; todos los observadores que analicen de forma correcta el mismo sistema cuántico deben coincidir en el contenido de esta información porque esta información es “real,” es decir, es independiente del observador. El observador no tiene que ser macroscópico, e incluso el “vacío cuántico” puede ser un observador válido.

Para mí, como para la mayoría de los físicos cuánticos, os obvio que la visión (1) es incorrecta; la mayoría creemos a pies juntillas en la visión (2), es decir, que la función de onda cuántica describe la “realidad” del sistema físico y, por tanto, es “real” en un sentido ontológico del término. El artículo PBR presenta un teorema que afirma que la visión (1) es incorrecta, es decir, demuestra algo que a muchos nos parece obvio. Como siempre, lo obvio, por obvio, no siempre es obvio. Un matemático diría que hasta lo obvio hay que demostrarlo.

Recuerda, las palabras “estadístico” y “real” en el lenguaje común y en el contexto de las interpretaciones de la mecánica cuántica tienen significados muy diferentes. “Que no te confunda la noche,” ni el día. En el artículo PBR estas palabras significan (salvo matices técnicos que aclara Matt Leifer) lo que he indicado más arriba para las visiones (1) y (2).

En la demostración del teorema PRB los autores afirman que si dos observadores utilizan dos funciones de onda diferentes para representar el mismo sistema cuántico, porque tienen información a priori diferente sobre el mismo, entonces es posible construir un protocolo de medida “especial” tal que los resultados físicos obtenidos por ambos observadores sean diferentes. En concreto, para ciertas preparaciones del sistema cuántico, uno de los observadores afirmará que hay una probabilidad no nula de observar un resultado imposible (cuya probabilidad por construcción es siempre cero). Los autores de PRB concluyen que dos observadores no pueden asignar dos funciones de onda diferentes al mismo sistema (aunque aparentemente sean compatibles con todas las medidas); siempre es posible demostrar que uno de estos dos observadores lo está haciendo mal (es “irracional” en palabras de Scott Aaronson). Por tanto, la función de onda es “real” (en el sentido ontológico del término) y no “estadística” (en su sentido epistemológico).

La demostración se basa en el uso de estados mezcla

Los estados de un sistema en mecánica cuántica son de dos tipos, puros y mezclas. Un estado puro es un estado cuántico de un sistema que es perfectamente conocido con anterioridad a la realización de una medida. En la mayoría de las ocasiones la información que se posee acerca del estado de un sistema es incompleta y solo es posible una descripción mediante una mezcla estadística de sus posibles estados. En un estado mezcla hay una cierta probabilidad asociada a cada uno de los estados puros que constituyen dicho estado.

Volvamos al teorema PRB. Si los dos observadores asignan sendos estados puros ortogonales diferentes al mismo sistema, sean |φ> y |ψ>, donde |φ>≠|ψ> y <φ|ψ>=0, entonces demostrar cual de los dos está equivocado es muy fácil. Basta medir el sistema y comprobar si el estado resultante del sistema coincide con |φ>, o con |ψ>. El observador que estaba equivocado creía que su función de onda describía un estado puro del sistema, cuando en realidad solo describía un estado mezcla (su conocimiento a priori sobre el sistema le confundió).

El problema es más complicado cuando permitimos que los dos observadores describan el mismo sistema mediante estados mezcla. Supongamos que un observador describe el sistema con un estado |0> y el otro observador utiliza un estado |+>, que no son ortogonales entre sí <0|+>≠0; por ejemplo, |+>=(|0>+|1>)/√2, cuyo estado ortogonal es |->=(|0>-|1>)/√2. ¿Cómo saber si alguno de los observadores está equivocado? Podemos medir el sistema en la base {|0>,|1>} y si se obtiene como resultado |1> entonces el primer observador está equivocado. O podemos medir el sistema en la base {|+>, |->} y si se obtiene como resultado |-> entonces es el segundo observador el que está equivocado. Por supuesto, el sistema podría estar en un estado mezcla y ambos observadores podrían estar equivocados, habiendo una probabilidad no nula de que el sistema tras la medida esté en el estado |1> cuando es medido en la base {|0>,|1>}, o en el estado |-> cuando es medido en la base en la base {|+>, |->}. El artículo PRB afirma que siempre es posible construir una base tal que determine cual de los dos observadores (que han asignado funciones de onda distintas al mismo sistema) está equivocado. Además, se puede lograr que este procedimiento experimental de medida sea inmune al ruido (repitiendo el procedimiento de medida un número suficiente de veces se puede compensar el efecto del ruido). Para los detalles técnicos remito al artículo PRB (o a la explicación de Matt Leifer).

Quizás te preguntes, por qué dos observadores con un conocimiento a priori diferente pueden disentir a la hora de asignar una función de onda concreta al mismo sistema cuántico. Podemos poner un ejemplo clásico sencillo (sugerido por los autores del artículo PBR, aunque yo lo voy a exagerar un poquito). Supón que dos observadores quieren estudiar los resultados que se obtienen al lanzar una moneda; puede salir cara (C) o cruz (X). El primer observador cree que la moneda es justa: hay una probabilidad del 50% de que salga cara y otra del 50% de que sea cruz (en cuántica esto sería un estado mezcla). El segundo observador sabe que la moneda está sesgada, tiene dos caras: hay una probabilidad del 100% de que salga cara y nunca saldrá cruz (en cuántica esto sería un estado puro). Ambos observadores presencian 5 lanzamientos de la moneda en los que ha salido CCCCC. ¿Cómo interpretan ambos observadores este resultado? (en cuántica sería ¿qué función de onda asignan a este sistema?). Para el primer observador se trata de una tirada razonable, aunque poco probable (5 caras salen solo el 3% de veces). Para el segundo observador se trata de una confirmación de su conocimiento, simpre sale cara. Sin embargo, cinco lanzamientos de la moneda son insuficientes para saber, sin el conocimiento a priori, si la moneda está sesgada o es justa. El resultado del experimento es compatible con el conocimiento a priori de ambos observadores. ¿Hay algún experimento sencillo que permita saber cuál de los dos observadores tiene una descripción completa del sistema? No hay que pensar mucho, basta mirar la moneda y comprobar que tiene dos caras. ¿Qué pasaría si la moneda tiene un sesgo del q% (con q≠50)? Es fácil diseñar un experimento estadístico para verificar esta hipótesis. Lo que hacen los autores del artículo PBR es hacer lo mismo para dos observadores y un sistema cuántico general.

Resumen final

Hay muchos teoremas en la mecánica cuántica que parecen muy obvios una vez que uno conoce el enunciado de dicho teorema y cuya demostración es muy sencilla (escribir lo obvio suele ser muy obvio). Pero como siempre alguien tiene que tener la imaginación y la intuición para enunciarlos y demostrarlos. En mi opinión, el teorema PBR es interesante pero no es revolucionario y sus implicaciones no serán tan importantes como las de las desigualdades de Bell (como sugiere Reich, traducido por Kanijo). Lo que en mi opinión esta claro es que este teorema tendrá aplicaciones prácticas en computación e información cuánticas, como ya ha ocurrido con otros teoremas obvios como el teorema de no clonación.

Un comentario final para acabar. ¿Este teorema demuestra que la interpretación epistemológica de la función de onda es errónea? No, porque los que prefieran esta visión pueden seguir una interpretación epistemológica “radical” según la cual la mecánica cuántica prohibe que los observadores utilicen información a priori que tienen sobre el sistema para definir su función de onda; ningún observador puede usar ningún tipo de información a priori por lo que todos los “estados mentales” de los observadores deben ser equivalentes entre sí. El teorema PBR relega la epistemológica de la función de onda a filosofía pura; en dicho contexto la visión epistemológica sigue viva y coleando (porque es irrefutable con argumentos físicos). Aún así, yo prefiero la visión ontológica de la función de onda.

8 Comentarios

Participa Suscríbete

Juan Manuel Dato Ruiz

Este tipo de teoremas ayuda a sentenciar posturas y obligar a muchos a definirse para que sean coherentes consigo mismos y con su filosofía: no se puede defender una postura y la contraria a la vez – eso no es tener criterio.

Por otro lado, me alegro que hayas puesto de manifiesto la existencia de una técnica capaz de asegurar que una moneda trucada puede ponerse al descubierto: en mi universidad los profesores de informática se ponían muy violentos de sólo insinuarlo. Y es que, en lo relativo a filosofías, hay mucha falta de objetividad.

josejuan

“me alegro que hayas puesto de manifiesto la existencia de una técnica capaz de asegurar que una moneda trucada puede ponerse al descubierto”

Pero es que no existe tal técnica. Por definición (de experimento aleatorio), lo único que puedes confirmar es “tu nivel de confianza” respecto de una hipótesis (que es lo que se ajusta mediante datos estadísticos).

Claro que si te pones a mirar si la moneda tienes dos caras o tres… entonces no hablamos de experimento aleatorio.

El_tonto_del_puebloEl_tonto_del_pueblo

Quizás sea muy tonto lo que vaya a decir (en honor a mi nombre claro está), per, a ver: la diferencia entre las dos posturas es que la 1) considera que el observador cuántico no actúa como un sistema de referencia inercial y la 2) que sí?

Juan F. González Hernández

“I can safely say that nobody understand Quantum Mechanics” R.T.Feynman.

Todo físico teórico o humano instruido en Mecánica Cuántica sabe calcular con ella. Es un conjunto de reglas autoconsistentes con algunos principios axiomáticos claros. Sin embargo, resulta paradójico que en pleno siglo 21 seguimos dudando sobre ella pese a su innegable éxito experimental. Con permiso de la Relatividad General, es la teoría más precisa jamás construida…El problema evidente es que para muchas personas ( Einstein, Schrödinger, Bohm, Penrose, Valentini,…) resulta filosóficamente inaceptable. Yo ahí me alineo con quien piensa que una teoría no tiene por qué ser filosóficamente aceptable para ser cierta, ya que sería poner a la religión a dar cuentas de la ciencia y no parece que sea el camino para avanzar ( a la historia me remito). Sin embargo, desde el punto de vista científico, algunas cosas resultan manifiestas:

1º. Hasta ahora, todo experimento que fue propuesto para destronar a la teoría cuántica ha fracasado. Incluso la ha fortalecido: desde el experimento del reloj en la caja que Einstein llevó a Solvay, pasando por el entrelazamiento cuántico, las desigualdades de Bell, los condensados de Bose-Einstein, … Una teoría que sobrevive a tantos asaltos, no parece que sea incorrecta. Quizás una aproximación (muy buena) a otra teoría como especulan algunos autores. Pero no creo que lo veamos en nuestro tiempo de vida.

2º. La teoría cuántica se ha aplicado a todas las interacciones fundamentales salvo a una con éxito: la interacción gravitacional resiste la cuantización. Nadie lo comprende, pero posiblemente esté relacionado con el hecho de que los grados fundamentales ( cuánticos) del espacio-tiempo son algo más sutiles para la gravedad que para el resto de fuerzas. No creo que nadie pueda responder a por qué es así, pero la gravedad es diferente del resto de fuerzas. Así que parece razonable pensar que la gravedad cuántica esté relacionada con un nivel de subestructura de la realidad físca más profundo que incluso la teoría cuántica actual. Una teoría “subcuántica” ( el “sub” es por no usar “super”, que lo confundiría con supersimetría) ha sido el objeto de especulación especialmente por A.Valentini en el Perimeter Institute de Canadá. Gerard ‘t Hooft también ha especulado sobre cómo la teoría cuántica podría emerger de un sistema determinista. Sin embargo, otra ruta es posible, y algunos grupos trabajando en gravedad cuántica desde teoría de cuerdas, gravitación cuántica de bucles ( o lazos, loops), y otros enfoques proponen en cambio modificar sutilmente la Mecánica Cuántica con un principio de incertidumbre generalizado, usualmente llamado GUP por los expertos, en los que se introduce una longitud fundamental para el espacio-tiempo cuántico ( “space-time” foam o fábrica de la realidad para otros autores, como Wheeler).

En resumen, parece que hay 3 alternativas:

1ª. La Mecánica Cuántica, en su versión actual, representa el estado último del conocimiento de la realidad mediante funciones de onda ( o matrices densidad si relajamos algunas condiciones). La realidad sólo puede conocerse mediante información cuántica.

2º. La Mecánica Cuántica representa una versión incompleta de la realidad, y será sustituida por una teoría completa cuando seamos lo suficientemente inteligentes para concebirla. El experimento de Bell, entre otras cosas, señala la imposibilidad de teorías de variables ocultas locales. No discutiré aquí el asunto más sutil de la contextualidad y Mecánica Cuántica. Daría para rato.

3º. Una opción intermedia. La Mecánica Cuántica śi representa una versión completa de la realidad, pero deberá de modificarse sutilmente para incluir la cuantización del campo gravitacional, que opera en otra jerarquía de cuantización. A diferencia de la opción anterior, aquí sí que seguirá teniendo sentido hablar de probabilidades y funciones de ondad, etc.

El descubrimiento esencial para comprender que el campo gravitacional es cuantizable, aunque no de una forma estándar, es la radiación de Hawking. Que los agujeros en Relatividad General “radien” partículas ( incluso tomado en un contexto semiclásico) es uno de los descubrimientos más asombrosos de la combinación parcial de Relatividad General y Física Cuántica. El efecto Unruh es otra pieza más de este puzzle. Por supuesto, el problema es…Si un agujero radia partículas, y tiene entropía, tiene microestados o microestructura. Entonces, ¿cuál es el origen de su subestructura? Evidentemente tiene que ser los “átomos” del espacio-tiempo o del “espacio” y el “tiempo” de alguna forma. El éxito parcial de la teoría de supercuerdas y la gravitación cuántica de lazos en explicar la fórmula de Bekenstein-Hawking para cierta clase de agujeros negros está reñida con su aparante imposibilidad y éxito parcial con el caso general que es la descripción cuántica del espacio-tiempo. ¿Vosotros con qué opción os quedaríais de las 3 más arriba? Cada opción tiene sus problemas.

Una cosa curiosa en los últimos años ha sido la irrupción de la teoría de cuerdas en el mundo de la materia condensada, y del uso cada vez más frecuente de ideas provinientes de la teoría de la complejidad y matemática no lineal tanto en el mundo cuántico como en el gravitacional. La noción de espacio-tiempo como algo “emergente” es también rivalizada con la idea de que la propia teoría cuántica es “emergente”. ¿Sobrevivirán la teoría cuántica y la relatividad general otro cuarto de siglo? Tal como están formuladas hay muchas incompatibilidades. Habrá que modificarlas ambas…La forma en que el nuevo sustrato de realidad sea revelado puede estar frente a nosotros y aún no lo hemos entendido. A ver qué pasa con esos neutrinos y el bosón de Higgs…

Tengo mis dudas al respecto de la formulación final de una teoría que incluya la gravedad, tanto de la Relatividad General, como de la teoría cuántica. Sin embargo, el éxito y precisión de tales teorías es tan grande que siempre quedarán como teorías efectivas y permanecerán como ejemplos arquetípicos de paradigmas científicos durante ¿cuánto tiempo?

A no ser, por supuesto, que algún genio o mente privilegiada encuentre algo más sencillo ( bastante improbable) para explicar la fenomenología de la gravedad o de las interacciones fundamentales.

JavierJavier

“La teoría cuántica se ha aplicado a todas las interacciones fundamentales salvo a una con éxito: la interacción gravitacional resiste la cuantización. Nadie lo comprende,”

Ciertamente, Juan, la Gravedad es el ‘Santo Grial’.

Y me agrada ver esto: “Con permiso de la Relatividad General, es la teoría más precisa jamás construida…”

Yo probaría a volver al viejo electromagnetismo, del que se sabe que es capaz de hablar en términos claros (Energía, no ‘torsiones del espacio-tiempo’, algo que nadie sabe que es).

Que pudo predecir , con las transformadas de Lorentz derivadas de Mickelson-Morley, la masa del electrón con el famoso termino 1/sqrt(1 – (v/c)^2).

Esto era la teoría del electrón de Lorentz.

Y,,,,,,,,,,,,,,,,,,,,,,,

Y buscaría matemáticamente una nueva ecuación para añadir a Maxwell.

Una que diera fuerza atractiva neta a conjuntos de cargas tales como las conocemos en los átomos y hadrones, cargas en total neutras, pero sometidas a ‘vuelo cuántico’ dentro de su estructura.

Una carga eléctrica libre no puede ser lo mismo que la misma carga en un átomo.

La primera, al acelerarse, radia, la 2ª, no.

Algo la ha pasado.

No lo sé, pero lo intuyo, el éxito de Lorentz fu total con su teoría, explica la masa inercial.

Hay ecuaciones del electromagnetismo que , siento, nos faltan.

Y en ellas está ese grial, la gravedad.

La linea seguida en estos últimos 100 años ha sido radicalmente distinta, una cosa es la carga eléctrica, otra la masa…………….de ahí buscar gravitones (Jamas encontrados), etc………

Como dice la obra que estoy escuchando mientras escribo esto: Koyaasnitkatchi, mundo sin sentido.

Una belleza :

http://www.youtube.com/watch?v=cJrtR...ure=related

Ante cada problema, se han creado nuevos ‘sabores’, nuevos ‘colores’, etc.

A Huida hacia delante, me suena.

Debería haberme metido en ello y, por supuesto, solo ante resultados experimentales nuevos, primero medir, luego confirmar, luego contar.

Saludos.

JavierJavier

Desde que vi este articulo, y tu post me lo ha confirmado francisco, veo una incompatibilidad:

¿De que hablamos, de la realidad de la función de onda, o de la realidad de los estados?.

No es lo mismo.

De todos modos, ‘ver la moneda’, no se puede hacer.

No puedes ‘ver’ una molécula de NH3 y ver si el Nitrógeno está arriba o abajo.

¿Porque no?, precisamente, porque es un sistema cuántico, SON las dos cosas a la vez.

Y la ‘realidad’ de los estados, y de la misma función de onda, ya se ha probado gracias a John Bell.

Es cierto que distintos ‘observadores’ pueden elegir distintos ‘grupos de estados’ y, asociados a ellos, distintas funciones de onda.

Pero el sistema funciona con todos ellos.

Ademas de la confusión que ya vi hace unos días en el original, y que repites acá (¿Hablamos de estados, o de función de onda?), no veo en que afecta a lo ya sabido.

La elección de estados y sus respectivas funciones de onda atañe al observador.

Pero la ‘realidad’ de esa ‘función de onda’, ya está probada, y es probado su inseparabilidad en partes (Emparejamiento).

Saludos.

JavierJavier

Tom,,,,,,,,,,

Recuerdo perfectamente la ecuacion de Schrodinger, ecuacion diferencial de la funcion de onda.

La de Dirac (Ampliacion de ella para que fuera invariable con las transformaciones de Lorentz).

Como de Schrodinger, salen los orbitales de los átomos, complejos , no simples orbitas esféricas.

Incluso recuerdo mi trabajo matematico sacando los orbitales mas simples, los s, del hidrogeno, y efectivamente, salían simetría esférica.

Pero la clave, ‘por que una radia, otra no’, era axioma en esos proceso analiticos.

El ‘electomagnetico confinado’, curioso……….

Pero no me respondiste.

No me cuentes tu vida, solamente dime si has hecho algun experimento (No se en que trabajas, n si tienes laboratorio con un minimo de equipamiento) o no.

Aunque no digas los intringulis, pero el resultado.

No te enrolles, al grano.

Saludos.

Javier.

Deja un comentario

Tu email nunca será mostrado o compartido. No olvides rellenar los campos obligatorios.

Obligatorio
Obligatorio
Obligatorio

Puedes usar las siguientes etiquetas y atributos HTML: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>