Por un fallo técnico en su página web, la Unión Matemática Internacional (IMU) ha desvelado hoy de forma anticipada los ganadores de las Medallas Fields de 2014. La sorpresa para muchos es que ha sido galardonada, por primera vez en la historia, una mujer: Maryam Mirzakhani, nacida en Irán, profesora de la Universidad de Stanford, California. Recordarás que yo lo predije en «¿Ganará una mujer una Medalla Fields en el ICM 2014 en Seúl?,» LCMF, 18 Jul 2014.
Junto a Maryam también han sido galardonados Artur Ávila, brasileño-francés que trabaja en el Instituto de Matemáticas de Jussieu, París, Manjul Bhargava, canadiense-americano que trabaja en la Universidad de Princeton, Nueva Jersey, y Martin Hairer, austríaco afiliado a la Universidad de Warwick, Reino Unido. Los tres aparecen entre los cinco candidatos que destaqué en mi entrada (LCMF, 18 Jul 2014).
El Premio Nevanlinna ha sido otorgado a Subhash Khot, Universidad de Nueva York y el Premio Gauss a Stanley Osher, Universidad de California en Los Angeles.
Más información en Philip Ball, «Iranian is first woman to nab highest prize in maths,» Nature News, 12 Aug 2014; Erica Klarreich, «Maryam Mirzakhani: A Tenacious Explorer of Abstract Surfaces,» Quanta Magazine, 12 Aug 2014; Thomas Lin, Erica Klarreich, «Artur Avila: A Brazilian Wunderkind Who Calms Chaos,» QM, 12 Aug 2014; Erica Klarreich, «Manjul Bhargava: The Musical, Magical Number Theorist,» QM, 12 Aug 2014; Natalie Wolchover, «Martin Hairer: In Noisy Equations, One Who Heard Music,» QM, 12 Aug 2014; Thomas Lin, Erica Klarreich, «Subhash Khot: A Grand Vision for the Impossible,» QM, 12 Aug 2014.
Recomiendo leer a Terence Tao, «Avila, Bhargava, Hairer, Mirzakhani,» What’s New, 12 Aug 2014, y «Khot, Osher, Griffiths,» What’s New, 12 Aug 2014. Tim Gowers, «ICM2014 — Bhargava laudatio,» GWblog, 15 Aug 2014; «ICM2014 — Avila laudatio,» GWblog, 15 Aug 2014. «ICM2014 — Hairer laudatio,» CWblog, 18 Aug 2014.
Todos los galardonados con la Medalla Fields 2014 son matemáticos con obras corales, que algunos calificarían de monumentales, siendo difícil encontrar un resultado único que brille sobre todos los demás. Permíteme un breve repaso de la vida y obra de los galardonados, con énfasis en Maryam (ya que aparece en el titular) y en Ávila (por ser el primer sudamericano que obtiene este galardón).
Maryam Mirzakhani trabaja en superficies hiperbólicas, espacios de moduli y sistemas dinámicos, campos en los que muestra «una ambición audaz» según su director de tesis Curtis McMullen (Universidad de Harvard).
Entre sus trabajos recientes cabe destacar Alex Eskin, Maryam Mirzakhani, «Invariant and stationary measures for the SL(2,R) action on Moduli space,» arXiv:1302.3320 [math.DS] (172 pp), donde junto a Alex Eskin, Universidad de Chicago, estudia los billares racionales mediante espacios de moduli. Un billar racional es un polígono no convexo cuyos ángulos son números racionales en el que estudia la dinámica de los rebotes de una bola puntual. Asociado al billar hay una superficie hiperbólica cuyos espacios de moduli caracterizan las posibles trayectorias.
En 2003, McMullen estudió los billares racionales cuya superficie asociada es de género dos (que tienen dos agujeros como dos dónuts unidos). Entre 2012 y 2013, Mirzakhani y Eskin, junto a Amir Mohammadi, Universidad de Texas en Austin, han logrado generalizar el resultado de McMullen a todas las superficies con más de dos agujeros (género mayor de dos).
Mirzakhani creció en Teherán (Irán) y le tocó vivir la guerra entre Irán e Irak. En 1994, con 17 años, fue miembro del equipo iraní que participó en las Olimpiada Internacional de Matemáticas ganando una Medalla de Oro (junto con otros 29 estudiantes); su puntuación fue de 41 puntos, cuando hubo 22 estudiantes con la puntuación máxima de 42 puntos. En 1995, repitió su logro obteniendo la puntuación máxima de 42 puntos (junto con otros 14 estudiantes).
Se licenció en matemáticas en la Universidad de Sharif, Teherán, en 1999, y realizó sus estudios de doctorado en la Universidad de Harvard, donde conoció a su director de tesis doctoral, experto en geometría hiperbólica. El número de curvas geodésicas cerradas en una superficie hiperbólica crece de forma exponencial en función de su longitud. Se llaman geodésicas simples a las que no se cortan a sí mismas. En 2004 la tesis doctoral de Mirzakhani presentó una fórmula para estimar cómo crece el número de geodésicas simples en una superficie hiperbólica en función de su longitud (Maryam Mirzakhani, «Growth of the number of simple closed geodesics on hyperbolic surfaces,» Annals of Mathematics, 168: 97-125, 2008).
En su tesis doctoral también obtuvo una nueva demostración de una conjetura del físico Edward Witten, Instituto de Estudio Avanzado de Princeton, Nueva Jersey, sobre el espacio de moduli (cuya primera demostración fue obtenida por Maxim Kontsevich, Institut des Hautes Études Scientifiques, París, quien fue galardonado con la Medalla Fields en 1998, en parte, por dicho trabajo).
Mirzakhani se describe a sí misma como lenta, pero constante. Necesita masticar los resultados durante años. Ella piensa las matemáticas con imágenes y enfoca los problemas difíciles garabateando en grandes hojas de papel. «Cuando una piensa en un problema matemático difícil y no quiere anotar todos los detalles, dibujar garabatos ayuda a mantenerse conectada al problema,» dice Mirzakhani.
Artur Ávila nació en Río de Janeiro, Brasil, siendo el primer brasileño que recibe la Medalla Fields, aunque tiene doble nacionalidad (también es francés). Como director de investigación en el CNRS francés (equivalente al CSIC en España), pasa la mitad del año en París y la otra mitad en el IMPA (Instituto de Matemáticas Puras y Aplicadas) de Río de Janeiro. Su obra coral (60 artículos en arXiv) presenta gran número de resultados profundos en diferentes temas relacionados con sistemas dinámicos y teoría del caos (campo de gran tradición en el IMPA). Al contrario que Mirzakhani, Ávila es un matemático rápido y acostumbrado al trabajo colaborativo.
El comportamiento caótico se suele ilustrar con la ecuación logística xn+1=r xn (1-xn), para 0≤x0≤1 y 0≤r≤4, que tras múltiples bifurcaciones de periodo dos presenta caos para r ≈ 3,56995; además, presenta regiones sin caos (islas de estabilidad) con periodo impar, lo que llevó al famoso teorema «periodo tres implica caos» (Tien-Yien Li, James A. Yorke, «Period Three Implies Chaos,» The American Mathematical Monthly 82: 985-992, 1975). Este tipo de ecuaciones se llaman aplicaciones unimodales (aunque a veces se usa el anglicismo mapas unimodales).
Ávila, junto a su director de tesis Welington de Melo y el famoso Mikhail Lyubich, Universidad de Stony Brook en Long Island, demostraron en 2003 de forma rigurosa que las islas de estabilidad aparecen en una clase muy amplia de aplicaciones unimodales (una famosa conjetura derivada del trabajo de Li y Yorke): A. Avila, M. Lyubich, W. de Melo, «Regular or stochastic dynamics in real analytic families of unimodal maps,» Inventiones Mathematicae 154: 451-550, 2003; PDF en IMPA.
La herramienta desarrollada por Ávila para estudiar las aplicaciones unimodales se llama renormalización y la ha aplicado a otros sistemas dinámicos. Destaca su estudio de los autovalores para operadores de Schrödinger cuasiperiódicos (un+1+un−1+v(n α)un=E un, donde E es el autovalor, v es una función potencial y α es una frecuencia), que son modelos muy simplificados (toy models) de cuasicristales. Ávila resolvió el problema de los diez martinis (Artur Avila, Svetlana Jitomirskaya, «The Ten Martini Problem,» arXiv:math/0503363 [math.DS]).
Brasil será la sede de la Olimpiada Internacional de Matemáticas de 2017 y del Congreso Internacional de Matemáticos de 2018, donde se anunciarán los próximos medallistas Fields. Sin lugar a dudas las matemáticas en Brasil recibirán un gran ímpetu en los próximos años gracias a Artur Ávila, toda una celebridad en su país. ¿Ganará algún otro brasileño la medalla Fields en 2018? Candidatos hay.
Manjul Bhargava, profesor en la Universidad de Princeton, tuvo como director de tesis doctoral a Andrew John Wiles (Univ. Princeton), famoso por demostrar el Último Teorema de Fermat usando la teoría de curvas elípticas. Defendió en 2001 su tesis sobre leyes de composición para formas cuadráticas (campo que inició Gauss). Según Bhargava se inspiró jugando con un cubo de Rubik de 2×2×2. Luego extendió estos resultados a formas cúbicas inspirado por el Dominó de Rubik de 2×3×3.
En la actualidad trabaja en curvas elípticas (que tienen importantes aplicaciones en criptografía) donde ha realizado importantes contribuciones. Con Arul Shankar, postdoc en la Univ. Harvard, Bhargava ha demostrado que más del 20% de las curvas elípticas tiene exactamente una solución racional. Con Christopher Skinner, Univ. Princeton, y Wei Zhang, Univ. Columbia, Bhargava ha demostrado que al menos el 20% de las curvas elípticas tienen un conjunto infinito de soluciones racionales de «rango 1» y que más del 66% de las curvas elípticas cumple con la famosa conjetura de Birch y Swinnerton-Dyer (uno de los premios del milenio del Instituto Clay de Matemáticas dotado con un millón de dólares). El artículo técnico es Manjul Bhargava, Christopher Skinner, Wei Zhang, «A majority of elliptic curves over Q satisfy the Birch and Swinnerton-Dyer conjecture,» arXiv:1407.1826 [math.NT].
Martin Hairer trabaja en análisis estocástico, donde ha logrado grandes resultados, como su reciente trabajo «A theory of regularity structures,» arXiv:1303.5113 [math.AP]. Las ecuaciones en derivadas parciales para procesos estocásticos (SPDEs) tienen importantes aplicaciones, como la turbulencia en las ecuaciones de Navier-Stokes o el crecimiento de colonias bacterianas en placas de Petri descrito por la ecuación KPZ (Kardar-Parisi-Zhang).
Hairer ha aplicado técnicas de ondículas (wavelets) para aplicar un análisis de multirresolución a las soluciones de SPDEs. Esta regularización multiescala le permite dominar las soluciones (que son infinitamente irregulares) y obtener una serie que aproxima la distribución probabilística de la solución. Su trabajo es muy técnico pero tiene conexiones con muchas otras ramas de la matemática, como las teorías superrenormalizables en teoría cuántica de campos o la teoría de funciones generalizadas de Colombeau.
Subhash Khot es famoso por proponer en 2002 una conjetura, la de los juegos únicos (Unique Game Conjecture), que ha revolucionado el campo de la complejidad computacional (como en 1971 lo hizo la conjetura P≠NP). Mucha gente pensaba que muchos problemas en los que es difícil obtener una solución exacta podrían tener una solución aproximada que fuera fácil de calcular. Pero la conjetura de Khot afirma todo lo contrario, la mayoría de los problemas difíciles de resolver de forma exacta, son también difíciles de aproximar.
Khot propuso su conjetura para un problema concreto NP-difícil (NP-hard) en grafos llamado VC (por Vertex Coloring), determinar si en un grafo concreto se pueden colorear todos sus vértices con tres colores sin que dos adyacentes tengan el mismo color. Como suele ocurrir en informática teórica, publicó su conjetura (citada más de 500 veces) en las actas de un congreso: Subhash Khot, «On the power of unique 2-prover 1-round games,» STOC ’02 Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, pp. 767 – 775, 2002. Refutar su conjetura requiere inventar un algoritmo eficiente capaz de aproximar la solución de cualquier problema difícil, algo que revolucionará la teoría de la complejidad computacional; por cierto, si P=NP dicho algoritmo existe.
Quedan 20-30 años para que lo gane un español, y eso si no hay otra guerra o se independiza alguna comunidad en cuyo caso no habrá España y por tanto no habrá Fields español.
Ni los «cerebros» españoles que emigran tienen el nivel de esta joven, muy guapa además.
Los medios siguen erre que erre con lo de «..el «Nobel» de las matemáticas». Me parece terrible que se compare un premio con límite de edad con el Nobel; un premio con límite de edad es muy difícil que premie al mejor, máxime cuando es cada cuatro años.
Tengo entendido que se le comenzó a llamar el «Nobel» de las mates, a raíz de evitar que se tratara de comunista peligroso a un premiado estadounidense que estaba en contra de la guerra del Vietnam.
Esta chica, además de ser un genio, es guapísima, por cierto.
No tenia ni idea. Supongo que debes referirte a Stephen Smale. Al final no se lo han dado a Jacob Lurie.
Pedro, cuenta la historia que mencionas (que el New York Times «inventó» lo de Nobel de las matemáticas para las Fields) en este artículo del 10 Ago 2014. No sé si tiene base histórica o no.
Que buen ojo tienes, Francis 😉
Me alegro de que una mujer sea reconocida por la comunidad de matemáticos como perteneciente a la élite de personas que contribuyen al avance de este campo.
Por cierto, creo que ya va siendo hora de que empecemos a aceptar la realidad que nos muestra la ciencia de forma objetiva, desterrando prejuicios, sesgos, ideologías y estúpidas demagogias. Deberíamos aceptar la realidad de la diversidad genética del planeta de forma natural, sin recurrir a palabras como «racismo», «machismo» o «feminismo» de forma genérica. Es evidente que la evolución, debido a la reproducción sexual y la consiguiente mezcla genética junto con una gran variedad de entornos cambiantes ha producido una diversidad genética muy importante. ¿Por que nos cuesta tanto aceptar este hecho científico? ¿Por que nos cuesta aceptar (hablando en términos promedio) que los alemanes, los norteamericanos o los japoneses son diferentes de los subamericanos, los africanos o los chinos? ¿Por que nos cuesta tanto aceptar que las mujeres y los hombres tenemos aptitudes innatas diferentes? La clave está en la palabra DIFERENTES y no mezclar esta palabra con las palabras MEJORES o PEORES.
Los hombres (de media) se interesan por como funcionan las cosas por dentro y se preguntan el porque funcionan así y que las hace funcionar así. Las mujeres (de media) dan prioridad a las relaciones humanas y a actividades humanísticas en lugar de técnicas. Yo creo que esto es conocido por todo el mundo y es un hecho innegable. Por supuesto, la explicación de esto es el pasado evolutivo diferente de unos y otros: las mujeres han dedicado gran parte al cuidado de los hijos y los hombres a la caza y el uso de herramientas y por supuesto también ha influido la cultura y el ambiente.
El día que asumamos la diversidad genética con naturalidad, que asumamos que somos diferentes (ni mejores ni peores) y hagamos leyes y normas civiles que tengan esto en cuenta, la sociedad habrá subido un enorme peldaño. Los gobernantes ignorantes deberían saber que aparte de la educación y de la cultura, existen cualidades innatas de los individuos, deberían reconocerlas y potenciarlas para conseguir la plena realización personal y profesional de cada persona. La demagogia, el ideal «progresista» de la «tabla rasa» o el «todos somos iguales» ha conducido a que España sea uno de los países con más alta tasa de abandono escolar y con las más altas tasas de analfabetismo matemático de los países desarrollados.
Por otro lado, es posible que, por suerte, estas «capacidades innatas» estén cambiando debido a la mayor independencia social y económica de las mujeres. Es posible (habría que consultar las estadísticas) que las mujeres cada vez estén más interesadas en ciencia y digo por suerte, porque quizás el mayor enemigo de la ciencia, además de la ignorancia, sea el hecho de que a las mujeres no les atraigan los hombres interesados en la ciencia y por tanto no tengan hijos con ellos. Si los científicos tuviesen cada vez menos habilidades sociales y las mujeres menos interés en la ciencia la extinción de la ciencia estaría muy cerca, por esto, es fundamental que ambos géneros acerquen sus «aptitudes y preferencias innatas». ¡ Necesitamos más mujeres científicas para salvar a la ciencia de la extinción :D!
Plank, tu comentario ha sido políticamente correcto. Por mi parte pienso que como no existe correlación entre el género y la capacidad intelectual, aplicar una norma siempre resulta incurrir en un exceso de estadística. Lo importante creo, antes que hombre o mujer, sea una buena persona. Salu2
Yo me conformaría con que después de cada noticia de ciencia con una mujer implicada no tenga que haber un «y muy guapa, por cierto». Si la foto hubiera sido de alguno de los hombres no creo que nadie hubiera sentido la necesidad de remarcar su aspecto, por atractivo que fuera. Forma parte de los micromachismos que tendríamos que intentar desterrar, máxime en el terreno de la investigación científica, donde ya lo tienen bastante jodido de fábrica.
Has dado en el clavo. Lamentablemente en España ser brillante o simplemente diferente, está mal visto.
La ciencia no se va a extinguir, esperemos.
Otro motivo para alegrarnos: la demostración de Hales (1998) de «la conjetura de Kepler» verificada por ordenador! Visto en: http://www.newscientist.com/article/dn26041-proof-confirmed-of-400yearold-fruitstacking-problem.html#.U-tYyaNqNhG
Gracias, Gabriel, muy interesante y muy esperado.
Primero, honor al merito al que se lo merece; ¡Felicitaciones Francis! por haber leído correctamente la tendencia del momento del Jurado Fields, es la única pagina web que se la jugo y acertó 3 de los 4 elegidos. Segundo, estoy triste por el resultado desfavorable al matemático Harald Helfgott y su oportunidad perdida para siempre. Si el resolver un famoso problema matemático que llevaba irresuelto 271 años no te da las credenciales para ser reconocido por la comunidad científica internacional, (aunado al hecho de que ya no podrá aspirar a otra oportunidad) aparte de tener un brillante curriculum, entonces apaga y vámonos. Tercero mi reconocimiento a los laureados -si bien se reconocen algunos hitos (la primera mujer, el primer latinoamericano), espero que esto incremente su difusión entre la gente de a pie, de que existen premios y héroes actuales de la matemática.
«Mirzakhani … piensa las matemáticas con imágenes… »
Pues eso es hacer trampa. Las matemáticas, según mis profesores de matemáticas y según compañeros míos que luego hicieron matemáticas hay que estudiarlas con la rigurosidad del lenguaje formal y deducir sólo fórmulas con fórmulas. Recurrir a técnicas difusas ajenas al lenguaje formal es simplemente hacer trampa. Que esta señora devuelva la medalla.
Vaya chorrada de comentario, comentar con odio por comentar sin tener ni idea.
Las matemáticas siempre se demuestran formalmente como toca, es en el proceso de como demostrarlo formalmente cuando se recurren a otros métodos para desarrollar las ideas.
Y dentro de estos métodos está lo de pensar las matemáticas con imágenes, que, si lo intentas hacer, verás que para que termine en un resultado formalmente correcto necesitas tener una capacidad intelectual muy por encima de la media.
Saludos,
sin duda no entendiste el mensaje irónico
Cierto, cuando leí el nombre me recordé que lo habías predicho.
Como curiosidad parece que la conjetura de witten da suerte para que te den la famosa medalla. Ya es la tercera persona que se lo dan por resolverla (kontsevich mirzhakami y oukonkov) ademas del propio witten claro.