Reseña: “Apología de un matemático” de G. H. Hardy

Dibujo20171125 book cover apologia matematico hardy capitan swing

“Los temas más «útiles» son habitualmente aquellos que para la mayoría de nosotros nos resultan más inútiles si los tenemos que aprender. [De] hecho, resulta bastante asombroso el poco valor práctico que tiene el conocimiento científico para una persona corriente, cuán aburrido y ordinario resulta ese valor, y cómo este da la impresión de variar de manera inversamente proporcional a su utilidad conocida. [Vivimos], o guiándonos por un conjunto de reglas generales, o confiando en el conocimiento profesional de otras personas. [Es] innegable que un buen conocimiento sobre matemáticas elementales [tiene] una considerable utilidad práctica”.

Confieso que la primera vez que leí la Apología de un matemático de Hardy (1940), en inglés, hace ya muchos años, me dejó un sabor agridulce. Acaba de caer en mis manos la nueva edición de la editorial Capitán Swing, con prólogo de José Manuel Sánchez Ron (hay otra edición en español con prólogo de Miguel de Guzmán). Lo he disfrutado desde el primer momento, empezando por el tacto de las letras en relieve en portada y contraportada, que ayudan a un agarre preciso cuando uno lee paseando. Por ello te recomiendo leer G. H. Hardy, “Apología de un matemático”, Capitán Swing (2017) [152 pp.]; por cierto, la traducción de Pedro Pacheco G., @Pedrociencia, es excelente. Sin lugar a dudas un buen regalo para las próximas fiestas navideñas.

Como escribe Sánchez Ron en su prólogo: Hardy “nos dejó un libro, esta Apología a un matemático, maravilloso, delicado, tierno, franco, conmovedor. Aunque no todas las ideas que defendía en él sean ciertas, merece la pena que las defendiese. Nos hablan de un mundo noble, desprendido, generoso en la búsqueda de la Verdad, atributos que nunca deberíamos dejar de admirar”. Godfrey H. Hardy, matemático experto en teoría de números y análisis matemático, es famoso por hacer famoso a Srinivasa Ramanujan; Hardy con 35 años conoció al genial indio cuando tenía 27 años, hasta que falleció 5 años más tarde. Hardy es el paradigma de lo que Marcelino Menéndez Pelayo llamó en 1894 la sublime utilidad de la ciencia inútil.

La Apología de Hardy rebosa pesimismo, ya que sufría una depresión aguda cuando la escribió como terapia. Sin embargo, su discurso es ágil y preciso, sus ideas están expresadas de una forma concisa pero muy clara; por ello este libro es ideal para provocar el debate, para discrepar con sus argumentos, para estar en desacuerdo con Hardy. Por ello creo que puede ser muy útil para profesores de matemáticas en enseñanza secundaria que quieran fomentar el pensamiento crítico entre sus alumnos. Y, por qué no, para todo aquél que sea capaz de apreciar la belleza de las matemáticas.

Dibujo20171125 author apologia matematico hardy capitan swing

El libro se inicia con un prefacio de José Manuel Sánchez Ron, otro prefacio de C. P. Snow y el prefacio del autor. Tras ellos nos encontramos con 29 breves capítulos, de entre una y cinco páginas, aunque la mayoría solo tienen dos páginas. José Manuel Sánchez Ron, “Godfrey Harold Hardy, el matemático puro” [pp. 7-31] es una glosa a las matemáticas y al autor al hilo de su Apología. Se inicia con “Pureza e intemporalidad de la matemática”, para pasar a “Belleza y matemática”, donde comenta que “lo que a un matemático le puede parecer bello a otro no se lo parecerá”. Un punto álgido es “La utilidad de la matemática”, donde se destaca su “contribución a la matemática «aplicada», la conocida como «ley de Hardy-Weinberg» de la genética”.

Hardy escribe en las primeras líneas de su artículo «aplicado»: “Soy reacio a entrometerme en una discusión que concierne a temas de los que no poseo un conocimiento especializado, y debería haber esperado a que el sencillo argumento que deseo aportar hubiese sido familiar para los biólogos”. Finaliza Sánchez Ron su prefacio con “Una personalidad compleja”, “Hardy como profesor” y “Final”. El prefacio de C. P. Snow [pp. 33-66] describe la personalidad de su amigo, el autor, una breve biografía y la razón que justificó la escritura de este libro.

Apología de un matemático es, si se lee con la atención que merece, un libro de una tristeza inquietante. [Su] claridad cristalina y su candor siguen presentes, y es igualmente cierto que se trata del testamento de un artista creativo. Pero también es, de un sutil y estoico modo, un lamento apasionado por la pérdida de las capacidades creativas que solía poseer y que no volverán jamás. [No] fui de gran ayuda para él durante esos últimos años. [He] de admitir, con remordimiento, que nuestra relación no es que se enfriara, sino que nos distanciamos. [Fui] a Cambridge al menos una vez por semana. Temía cada visita. [La] quería, no la temía. ¿Qué hay que temer del vacío? [Cada] tarde, su hermana, antes de dejarle, le leía un capítulo de la historia del críquet en la Universidad de Cambridge. Uno de esos capítulos contenía las últimas palabras que oyó”.

Dibujo20171125 author getty images hulton deutsch book cover apologia matematico hardy capitan swing

“Escribo sobre matemáticas porque al igual que cualquier otro matemático que ha cumplido los sesenta años, ya no poseo la frescura de mente, la energía o la paciencia para realizar de forma eficiente mi propio trabajo,” confiesa Hardy en el capítulo 01 [pp. 71-72]. “Me propongo presentar una apología de las matemáticas. [Al] defender las matemáticas, estaré defendiéndome a mí mismo, y [mi] apología no podrá evitar ser, en cierta medida, egocéntrica. [Cierto] egoísmo de este clase es inevitable”, glosa en el capítulo 02 [pp. 73-74].

El capítulo 03 [pp. 75-77] recuerda que “hay muchas personas que no saben hacer absolutamente nada bien. [Puede] que un 5 o quizás un 10 por ciento de las personas sabe hacer algo bastante bien. [Si] un hombre posee un talento genuino, debería estar dispuesto a sacrificar lo que sea para poder cultivarlo y desarrollarlo al máximo”. “Ningún matemático debería permitirse olvidar que las matemáticas [son] una labor para hombres jóvenes”, afirma sin rubor en el capítulo 04 [pp. 79-80]. “No conozco ningún caso de un importante avance matemático cuyo descubrimiento haya sido empezado por un hombre que haya pasado de los cincuenta años de edad”.

“La «variación humilde» de la apología estándar” se presenta en el breve capítulo 05 [p. 81]. “¿Merece la pena dedicar la vida a las matemáticas? [Y] ¿por qué?” se pregunta Hardy en voz alta en el capítulo 06 [pp. 83-85]. Con el objetivo del libro ya presentado llegamos al capítulo 07 [pp. 87-88]. “El primer deber de un hombre, y en todo caso el de un hombre joven, es ser ambicioso. [La] ambición ha sido la fuerza impulsora responsable de casi todas las mejores obras realizadas en el mundo”. Los tres motivos más importantes para investigar son “la curiosidad intelectual, [el] orgullo profesional [y] la ambición. [No] hay nada en ello de lo que un hombre decente debiera avergonzarse”.

“El logro matemático, sea cual sea su valor intrínseco, es el más perdurable de todos”, afirma Hardy en el capítulo 08 [pp. 89-90]. “Puede que inmortalidad sea una palabra absurda, pero es muy probable que sea un matemático el que tenga más probabilidad de alcanzarla, sea cual sea su significado. [La] fama en matemáticas, si te la puedes permitir, es una de las inversiones más sólidas y firmes”. En el breve capítulo 09 [p. 91] se lamenta el autor, “un catedrático tiene que renunciar a algo y, en particular, a la posibilidad de ganar grandes sumas de dinero”, y nos compensa con un curioso sueño que le relató Bertrand Russell.

Dibujo20171125 author wikipedia commons apologia matematico hardy capitan swing

El capítulo 10 [pp. 93-95] se inicia rotundo: “Un matemático, al igual que un pintor o un poeta, es un creador de modelos. Si sus modelos son más permanentes que los de los otros es porque están compuestos por ideas. [Con] el paso del tiempo, las ideas se deterioran menos que las palabras”. Por supuesto, “los modelos del matemático [deben] ser hermosos. [No] existe nada en el mundo que satisfaga tanto incluso a hombres famosos [como] el descubrir, o redescubrir, un auténtico teorema matemático”. En el capítulo 11 [pp. 97-98] se nos aclara que “las mejores matemáticas son serias y hermosas; se puede decir que son importantes si así se desea, [pero] serias expresa mejor lo que quiero decir. [La] «seriedad» de un teorema matemático radica [en] la importancia de las ideas matemáticas que conecta”.

“Llegados a este punto”, el capítulo 12 [pp. 99-101], “está claro que, si queremos progresar, debo citar ejemplos de teoremas matemáticos «auténticos», teoremas que cualquier matemático consideraría de primer nivel. [El] primero es la demostración de Euclides de la existencia de una infinitud de números primos [realizada] por reducción al absurdo“. El capítulo 13 [pp. 103-106] presenta el “segundo ejemplo, [la] demostración de Pitágoras de la «irracionalidad» de la √2. [Podría] citar cualquier teorema elegante de la teoría de números cuyo significado podría ser comprendido por cualquiera. [Pero] la demostración, aunque no se pueda decir que sea «difícil», requiere aclarar algunos puntos [y] podría parecerle aburrido a un lector que no estuviera familiarizado con las matemáticas”.

“La superioridad de los teoremas matemáticos en cuanto a su seriedad es obvia y aplastante” afirma Hardy en el capítulo 14 [pp. 107-109]. Por cierto, “es obvio que los números irracionales no tienen interés alguno para un ingeniero, ya que trabaja únicamente con aproximaciones, y todas las aproximaciones son racionales”. El capítulo 15 [pp. 111-112] recuerda que “un teorema «serio» es un teorema que contiene ideas «significativas». [Hay] dos aspectos que son esenciales, una cierta generalidad y una cierta profundidad; pero ninguna de esas cualidades es fácil de definir con total precisión”. El capítulo 16 [pp. 113-115] trata de aclarar el significado de “generalidad, [una] palabra ambigua y bastante peligrosa”, y el 17 [pp. 117-118] el de “profundidad, [un] concepto que es todavía más difícil definir”.

“¿Qué cualidades «puramente estéticas» se pueden distinguir en teoremas como los de Euclides o Pitágoras? [Un] alto grado de incertidumbre, combinado con cierta inevitabilidad y economía. Los argumentos utilizados tienen una forma curiosa y sorprendente”. Se puede comparar el juego del ajedrez con las matemáticas, “pero el «gran juego» del ajedrez es principalmente psicológico, un conflicto entre una inteligencia entrenada y otra, y no una simple colección de pequeños teoremas matemáticos”.

Dibujo20171125 hardy mathematical institute apologia matematico hardy capitan swing

“Una ciencia o un arte son «útiles» si su desarrollo incrementa, aunque sea de forma indirecta, el bienestar material y el confort de la gente, si fomenta la felicidad, utilizando esa palabra en su sentido más ordinario y corriente. [Algunas] matemáticas son ciertamente útiles en este sentido; los ingenieros no podrían realizar su trabajo sin unos buenos conocimientos prácticos de matemáticas,” aclara Hardy en el capítulo 19 [pp. 121-122]. El párrafo que abre esta reseña está extraído del capítulo 20 [pp. 123-124].

El capítulo 21 [pp. 125-126] nos presenta al Hardy más Hardy: “las matemáticas «auténticas», las de Fermat, Euler, Gauss, Abel y Riemann, son, casi en su totalidad, «inútiles» (y esto es igualmente cierto tanto para las matemáticas «aplicadas» como para las «puras»). [A] veces se sugiere que los matemáticos puros se vanaglorian de la inutilidad de su trabajo. [Se trata], por supuesto, de una floritura retórica deliberada”. La cuestión clave es “¿en qué se diferencian las matemáticas puras y las aplicadas?”, capítulo 22 [pp. 127-128]. “Para mí, y supongo que también para la mayoría de los matemáticos, existe otra realidad a la que llamo «realidad matemática». [Creo] que la realidad matemática yace fuera de nosotros, y que nuestra función es descubrirla u observarla, y que los teoremas que demostramos [son] simplemente las notas de nuestras observaciones”.

“El contraste entre las matemáticas puras y las aplicadas pude que se más evidente en geometría”, afirma Hardy en el capítulo 23 [pp. 129-131]. Para luego sorprender a algunos en el capítulo 24 [pp. 133-134] al afirmar que un matemático “está en un contacto mucho más directo con la realidad” que un físico. “Ni los físicos ni los filósofos han dado jamás un argumento convincente sobre lo que es la «realidad física». [Pero] un matemático trabaja con su propia realidad matemática. [La] visión realista es mucho más verosímil si se trata de la realidad matemática que de la física, porque los objetos matemáticos son lo que parecen ser, algo que ocurre en un grado mucho menor con os objetos físicos”. Por ejemplo, “137 es un número primo, no porque pensemos que es así o porque nuestras mentes se hayan moldeado de una forma y no de otra, sino porque es así, porque la realidad matemática está construida de ese modo”.

En el capítulo 25 [pp. 135-136] se afirma sin rubor que “para bien o para mal, son precisamente las partes más aburridas y elementales, tanto de las matemáticas aplicadas, como de las puras, las que sirven. Puede que el tiempo cambie todo esto. [Pero,] hasta ahora, la evidencia nos hace concluir que, tanto en [relatividad] como en [mecánica cuántica], lo que es útil para la vida práctica es la parte más corriente y aburrida de esas ciencias”.

“¿Qué partes de las matemáticas son útiles?” inicia el capítulo 26 [pp. 137-138]. La “conclusión [es] bastante curiosa, [las] matemáticas puras son, en su conjunto, claramente más útiles que las aplicadas”. Y el capítulo 27 [pp. 139-140] con “se puede objetar que mi concepto de «utilidad» ha sido demasiado limitado”. Hay que “dejar claro, a muchos lectores que nunca han sido ni serán matemáticos, que en las matemáticas hay mucho más de lo que ellos creen”. Más aún, en el capítulo 28 [pp. 141-143], se aclara que “existen, entonces, dos matemáticas. Están las matemáticas auténticas de los matemáticos auténticos, y están las que yo llamaría matemáticas «triviales», a falta de una palabra más apropiada. [Las] matemáticas triviales son, en su conjunto, útiles, y, en cambio, las matemáticas auténticas no lo son”. Y se llega a un punto controvertido, la siguiente afirmación: “Las matemáticas auténticas no tienen efecto alguno sobre la guerra. [Por] otro lado, las matemáticas triviales tienen muchas aplicaciones para la guerra”.

Dibujo20171125 hardy littlewood youtube KY6wYQKfivE apologia matematico hardy capitan swing

“Finalizaré” el último capítulo, 29 [pp. 145-149], “con un resumen de mis conclusiones, pero exponiéndolas de una forma más personal. [No] recuerdo haber sentido de niño ninguna pasión por las matemáticas, y las ideas que tenía de lo que debía ser tener la carrera de un matemático distaban mucho de ser honrosas. Para mí, las matemáticas eran exámenes y becas. Quería vencer a los demás chicos, y este me parecía el medio en el que lo podía lograr más claramente. [El] profesor Love [me aconsejó] que leyera la famosa obra de Jordan titulada Cours d’analyse; y nunca olvidaré el entusiasmo con el que leí ese extraordinario trabajo que ha sido la primera fuente de inspiración para tantos matemáticos de mi generación, y aprendí por primera vez, mientras lo leía, lo que realmente son las matemáticas”.

“Los auténticos momentos decisivos de mi carrera llegaron diez o doce años más tarde, en 1911, cuando empecé mi larga colaboración con Littlewood, y en 1913, cuando descubrí a Ramanujan. [He] tenido pocos problemas con la aburrida rutina de las universidades. Odio «dar clases», y he tenido que hacerlo muy pocas veces, ya que la enseñanza que he ejercido ha sido casi siempre como supervisor de investigación; me encanta dar conferencias [y] siempre he tenido un montón de tiempo disponible para dedicar a las investigaciones, que han sido para mí la gran felicidad permanente de mi vida. Me ha resultado fácil trabajar con otros, he colaborado a gran escala con dos matemáticos excepcionales; y eso me ha permitido contribuir a las matemáticas muchísimo más de lo que razonablemente podría haber esperado. [Por] lo tanto, mi elección fue la correcta si lo que quería era tener una vida razonablemente confortable y feliz. [Nunca] he hecho nada que se pueda considerar «útil». [Si] se juzga basándose en criterios prácticos, el valor de mi vida matemática es cero. [Y] es innegable que he creado algo, lo cuestionable es el valor de esa creación”.

Finaliza el libro con una nota [pp. 151-152] que responde a críticas del profesor Broad, del doctor Snow y de J. M. Lomas tras la lectura del manuscrito original. Sin lugar a dudas un libre delicioso que disfrutarán todos los que se atrevan a disfrutar de la visión de Hardy sobre las matemáticas. ¿Te atreves?


10 Comentarios

Participa Suscríbete

kurodo77kurodo77

Para mi existen algunas matemáticas que se pueden llamar “verdades platónicas”(en el sentido de que existen independientemente del pensamiento humano). Y son las afirmaciones que involucran a los números naturales individualmente. Lo demás puede discutirse pero en los números naturales es clarísimo cuando se cumple una propiedad P para un número natural y podemos entender claramente(así no sepamos cual sea el caso) que significa que un número natural cumpla dicha propiedad. También en algunos casos podemos identificar claramente que significa para ciertos grupos de naturales que ellos cumplan una propiedad: que cada uno de los naturales que conforman el grupo la cumplen. Incluso podemos entender que significa que los naturales son infinitos(y esto lo puede entender un crio de 10 años normal sin drama ni problema alguno, no se necesita ser un genio). En esas realidades estoy de acuerdo con Hardy. Son objetivas independientemente de si son humanos, extraterrestres, o una máquina que las descubra.
Pero cuando metemos las teorías de conjuntos pues al menos para mí ya no hay tal “realidad objetiva”. Y con eso no estoy diciendo que estoy en contra de las teorías de conjuntos sino que simplemente hay que pensar de otra manera, pensando en conectar ideas lógicas escogiendo los axiomas adecuados y hacer que esas ideas encajen. Hay que volverse formalistas.

planck

La verdad es que los Matemáticos están en un “plano intelectual superior” (aunque a veces les falla la capacidad de comunicación o la capacidad de gestionar emociones). Es fácil comprender que los Matemáticos de verdad, los Matemáticos “puros” tengan la sensación de estar tratando con algo casi “místico”, algo que trasciende cualquier otra tarea que un ser humano puede realizar. Creo que hay algo de cierto en ello, pero creo que es porque las leyes fundamentales que rigen el Universo que vivimos tienen que tener una estructura lógica y coherente. Las Matemáticas aplicadas “descubren” esta estructura mientras que las Matemáticas puras son capaces de describir cualquier estructura que cumpla unas premisas lógicas de consistencia, es decir, las primeras describen nuestro Universo (la Física) y las segundas describen cualquier mundo potencialmente posible. Lo que sucede en algunos casos (como algunos resultados del mismísimo Hardy y de Ramanujan) es que algunas ideas de las Matemáticas puras han pasado a ser parte de las aplicadas. Como dijo el gran Gauss ” la Matemática es la reina de las ciencias”: los teoremas Matemáticos son inmortales y si fusionamos las Matemáticas y la Física con su conocimiento empírico podemos “viajar” a partes de nuestro Universo que jamás veremos directamente pero que podemos inferir a través de generalizaciones de fenómenos bien conocidos.
Es cierto que no todo el mundo puede aspirar a ser Matemático, tampoco ayuda mucho a crear vocaciones la forma actual de enseñar Matemáticas en los colegios y Universidades o la imagen que se da de los Matemáticos. De todas formas no es difícil darse cuenta de que el lenguaje que utiliza la naturaleza a nivel fundamental es Matemático y no es dificil entender porque los Matematicos aún en su modestia y su timidez, son los gigantes sobre los que se asienta gran parte del conocimiento humano y el futuro de la Física fundamental.
PD: Recomiento el estupendo libro “La Música de los números primos” donde también aparecen increíbles anécdotas sobre Hardy y muchos otros Matemáticos.

Francisco R. Villatoro

Yo también recomiendo los dos libros del matemático Marcus du Sautoy, “Simetría. Un viaje por los patrones de la naturaleza”, Acantilado (2009) y “La música de los números primos”, Acantilado (2007). Hablé de ellos en este blog, brevemente, en “La obra que inspiró “Cosmos” de Carl Sagan: “The Ascent of Man” de Jacob Bronowski”, LCMF, 27 Ene 2016, y “Conferencia TED sobre “Simetría y la Alhambra” de Marcus du Sautoy”, LCMF, 15 Feb 2015.

Ramiro Hum-SahRamiro Hum-Sah

Como siempre agradezco la reseña y el esfuerzo de Francis.

Con ánimo de hacer un profundo contraste, me atrevo a recomendar mi libro favorito de divulgación en Matemáticas “Amor y Matemáticas” Edward Frenkel

http://francis.naukas.com/2015/07/18...rd-frenkel/

También con tema central una historia de un hombre en particular, una historia que fue engendrada (igual que la de Hardy) la belleza de las matemáticas, el contraste: Frenkel es mucho más optimista sobre la relación humano-belleza :)

Pedro MascarósPedro Mascarós

No hay nada más terrible, para aquel que disfruta enfrentarse creativamente a los problemas, que la edad…la pérdida de la frescura mental, de la belleza, de la fortaleza física..Si no fuiste capaz de enderezar y dar sentido, a todas las ideas lucuelas que te rondaban antes de los 40, ya no va a ser posible después.

Y lo más doloroso, la pérdida para siempre de la “potencialidad” de ese “Si yo quisiera, y me volcara a ello, podría llegar a ser…a conseguir….” que lo puedes decir a los 19, pero no ya a partir de los 40, y mucho menos a partir de 50 o 60.

Es cierto que en algunas disciplinas artísticas, como la escritura o la actuación, se gana con la edad, si bien, no es menos patético ver a muchos mayores famosos en estas lides, que por este motivo, creen también haber ganado superioridad moral, y por culpa de no saber ya gestionar con frescura su envergadura intelectual, y no ser capaces ya de ver la realidad, no dicen más que majaderías.
—-
La depresión te muestra la realidad desnuda, te dice la verdad a la cara, es la enfermedad de la plena conciencia; es falso que esté relacionada con ser inteligente o tonto como se decía antaño, es simplemente una falta de la serotonina y noradrenalina, sustancias que nos mantienen en ese estado de optimismo ante el futuro, a pesar de saber que las cosas más terribles y horrorosas que nos podamos imaginar, pasan, han pasado y seguirán pasando.

AlbertoAlberto

Es difícil meterse en la mente de un genio y saber qué se siente cuando se tiene la sensación de no poder descubrir cosas que nadie ha descubierto antes. Quizá ahí está el problema, en un exceso de competitividad, de intentar lograr llegar siempre el primero, de ser “inmortal”. Sé que eso te hace en muchos casos conseguirlo y es necesario para superarse, pero como en otros ámbitos de la vida hay que saber envejecer y disfrutar desde otro plano, quizá intentando entender lo que otros han descubierto, quizá aportando desde un segundo plano. La belleza de las matemáticas, el amor por ellas, debería ser suficiente, olvidando por un momento quién fue capaz de visualizar primero esa belleza. A fin de cuentas, como me comentó en persona uno de los mejores físicos españoles de siempre refiriéndose al estudio de cualquier materia , “lo importante es disfrutar”.

benjaminbenjamin

Hola Francis
Que libro me recomiendas sobre el panorama general sobre la matematica de los ultimos 10 o 20 años y futura? Sin ser matematico yo, pero si de ciencias fisicas

danieldaniel

Hardy fue además el creador de la ley o principio de Hardy-Weinberg que se usa en Biología. Aunque en realidad tal y como la formuló no se cumple casi nunca, porque no incluye parámetros que en la vida real sí se dan, como selección o mutación.

Deja un comentario

Tu email nunca será mostrado o compartido. No olvides rellenar los campos obligatorios.

Obligatorio
Obligatorio
Obligatorio

Puedes usar las siguientes etiquetas y atributos HTML: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>