La física de la película “Interestelar”

Dibujo20141109 kip thorne - murph - interstellar black board

Ya he visto la película de ciencia ficción del año, Interstellar de Christopher Nolan (Memento, Batman begins, Origen (Inception), etc.). Esta película es la mejor excusa posible, ahora mismo, para hablar de relatividad general, dilatación temporal, agujeros negros y paradojas asociadas a viajes en el tiempo. El famoso físico relativista Kip Thorne colaboró en la versión original del guión (y hace un cameo virtual como robot KIPP). Muchos aspectos de la física de la película son correctos, no en balde está detrás de ellos el genial Thorne. Sin embargo, también hay otros aspectos que, en mi opinión, son concesiones al guión para hacer la historia más efectista.

Antes de nada te recomiendo leer las estupendas críticas de Daniel Marín, “Los aciertos y errores de Insterstellar,” Eureka, 09 Nov 2014, y de Arturo Quirantes, “Luces y sombras de Interstellar,” El profe de Física, 10 Nov 2014.

La parte más técnica de esta entrada está basada en Ikjyot Singh Kohli, “On the science of Interstellar,” Dr. I. S. Kohli’s Blog, 07 Nov 2014. Para las partes menos técnicos he leído a Rowan Hooper, “Spoiler-free guide to the science of Interstellar,” New Scientist, 30 Oct 2014; Marlow Stern, “‘Interstellar’ Is Wildly Ambitious, Very Flawed, and Absolutely Worth Seeing,” The Daily Beast, 07 Nov 2014; Ian O’Neill, “‘Interstellar': A Missed Opportunity: Movie Review,” Discovery News, 08 Nov 2014; Phil Plait, “Interstellar Science,” Slate.com, 06 Nov 2014; Phil Plait, “Follow-Up: Interstellar Mea Culpa,” Slate.com, 09 Nov 2014.

No lo he leído aún, pero tiene muy buena pinta el nuevo libro de Kip Thorne, “The Science of Interstellar,” W. W. Norton & Company, 7 Nov 2014 (versión Kindle en Amazon). Ya os contaré cuando lo lea… Por lo que parece el libro aclarará qué física en la película es correcta y cuál es pura especulación (y parece que hay mucha especulación). Todos los científicos que colaboran con películas de Hollywood aceptan que las licencias literarias deben violar la física establecida para mantener la tensión de la historia. Thorne no ha sido una excepción.

ATENCIÓN, SPOILERS. Ya me conoces, soy torpe y no sé explicar la física de una película sin incluir algunos spoilers. Si prefieres ver la película antes de leer este post, no sigas leyendo. Por cierto, si eres aficionado a la ciencia ficción la película te encantará, está repleta de guiños a grandes películas del cine de ciencia ficción, no sólo 2001, o Gravity, también Star Wars, Alien, Contact, Elysium, y muchas otras. Un gran homenaje de Nolan y todo un placer para los buenos aficionados a la SciFi (busca las escenas, te encantará recordarlas). Lo dicho, disfruta la película. Y luego retorna aquí, si te apetece.

ATENCIÓN, SPOILERS. A partir de aquí, ya sabes… bajo tu responsabilidad cinematográfica.

Por cierto, el protagonista, Cooper, actúa como vaquero espacial en plan Chuck Norris (eso sí, sin pegar patadas). El actor, McConaughey, le da un toque lacrimógeno a su personaje, rayando lo histriónico, que le colocará entre los candidatos al Óscar al mejor actor. En mi opinión su actuación es correcta, pero no es brillante y a veces sobreactúa en exceso. Por ello no creo que merezca el galardón.

Dibujo20141109 interstellar-wormhole-travel-141107c-02

La mejor manera de explicar la teoría general de la relatividad, la teoría de la gravedad de Einstein, es usar la dilatación del tiempo gravitatoria. Conforme la intensidad del campo gravitatorio crece, el tiempo corre más lento. Los satélites del GPS tienen relojes atómicos que van más rápido que los que se encuentran en la superficie; se requiere usar una corrección relativista que compense dicho efecto gravitatorio. Este efecto es clave en la trama del guión de Interstellar, por ello es una película ideal para recomendar a los alumnos de cursos de relatividad general.

Interstellar nos propone un futuro similar al dust bowl [wiki] que azotó los EEUU entre 1932 y 1939. “Uno de los peores desastres ecológicos del siglo XX. Una sequía que afectó a las llanuras y praderas desde el Golfo de México hasta Canadá. El suelo, despojado de humedad, era levantado por el viento en grandes nubes de polvo y arena tan espesas que escondían el Sol (las llamadas ‘ventiscas negras’ o ‘viento negro’).” Para más inri, la película afirma que hay múltiples plagas que afectan a los cultivos de cereales, similares a la plaga de los heterocontos “que asolaron los cultivos de patata en Irlanda en el siglo XIX produciendo una gran hambruna.” La película no ofrece detalles biológicos de estas plagas, que yo pueda recordar.

La humanidad no tiene futuro, pero Ellos nos regalan un futuro (si no, no habría película). Ellos viven en un espaciotiempo de cinco dimensiones paralelo a nuestro espaciotiempo de cuatro dimensiones (recuerda que Ellos son los guionistas, que viven en un espacio tridimensional, cuando la película es un espacio bidimensional). Ellos han creado un agujero de gusano que conecta nuestra galaxia con otra galaxia (no sabemos si de nuestro universo o de algún otro universo paralelo). El punto de entrada está en las cercanías de Saturno (claro homenaje a 2001: Una odisea en el espacio de Arthur C. Clarke y Stanley Kubrick). El punto de salida está en un sistema planetario con siete planetas en órbita alrededor de un agujero negro supermasivo. Nuestros protagonistas sólo visitarán tres de ellos, llamados Miller, Edmunds y Mann.

Ellos (que en la película viven en cinco dimensiones) incitan al alter ego de Kip Thorne, el profesor Brand interpretado por Michael Caine, a proponer una misión espacial a dicho sistema planetario en busca de un planeta habitable que regale un futuro a la humanidad (en alguno de los tres planetas Miller, Edmunds y Mann, ¿pero en cuál?). Cooper (Matthew McConaughey), el protagonista, debe abandonar entre lágrimas a su hija Murph (una broma con la ley de Murphy); ella se quedará en la Tierra y acabará siendo una famosa física teórica, completando el trabajo iniciado por el profesor Brand (en última instancia una teoría cuántica de la gravedad).

Dibujo20141109 black hole - interstellar movie

Los agujeros de gusano que se pueden atravesar son física altamente especulativa, pero Ellos pueden violar la física y hacerlos realidad. No comentaré más sobre este asunto, pues no hay física en el viaje por el agujero de gusano, solamente licencias literarias. Todo lo que ves en la película durante el viaje es puro espectáculo. Sin embargo, la entrada del agujero de gusano cerca de Saturno es muy realista (similar a una esfera transparente que refracta las estrellas del fondo). Me ha gustado mucho. Por cierto recomiendo leer a Enrique Borja, “Otra más sobre agujeros de gusano,” Cuentos Cuánticos, 11 Nov 2014, quizás el próximo ganador del premio de los X Bitácoras en la categoría de Ciencia.

Dibujo20141109 interstellar black hole - warner bros

Las imágenes del agujero negro (llamado Gargantúa) muestran su disco de acreción de forma bastante realista (recomiendo leer a Héctor Vives, “El agujero negro de Interstellar,” Critical Thinking, 01 Ago 2014). Sin embargo, no son del todo realistas porque omiten algunos elementos clave. No se ve la fuente de la materia del disco de acreción. No se ha simulado en detalle la magnetohidrodinámica del disco de acreción, la emisión de radiación (rayos X y rayos gamma), que producirían brillos que deberían quedar congelados por efecto Doppler gravitatorio. Aún así, las imágenes son espectaculares.

Interstellar presume de haber logrado las imágenes más realistas de un agujero negro que hemos visto en una película de Hollywood y supongo que será verdad. Algunas escenas de la película son de gran belleza. Me ha recordado a 2001 de Kubrick, aunque con un ritmo mucho más rápido, incluso más rápido que el de Gravity. La historia creo que aburrirá a pocos, aunque la película se hace muy larga con sus 169 minutos. Dos horas hubieran sido más que suficientes y la historia no perdería ni un ápice.

Dibujo20141109 interstellar black hole - space com

Gargantúa es un agujero negro supermasivo (su masa es de unos 100 millones de veces la masa del Sol) que está en rotación (con una velocidad casi maximal, su velocidad radial es del 99,8 % de la velocidad de la luz en el vacío). Cooper representa al espectador sin conocimientos en física y en la película varios protagonistas tratan de explicarle los conceptos básicoss de la física de los agujeros negros en rotación, el horizonte de sucesos y la ergosfera, así como la diferencia entre la singularidad de un agujero negro de Schwarschild y uno de Kerr. Sin embargo, en mi opinión, las explicaciones son pobres (por no decir pésimas) y creo que pocos espectadores se enterarán de las sutilezas de la explicación (salvo que sean físicos y ya las conozcan). Por cierto, he visto la película traducida al español en un cine, no sé si en el original en inglés se entenderán las sutilezas algo mejor.

Dibujo20141109 interstellar - the movie - 1415385937598 - the daily beast com

Este agujero negro presenta un sistema planetario con siete planetas. El más cercano al horizonte de sucesos, Miller, es un planeta con agua líquida en la superficie y una gravedad del 130% de la gravedad en la Tierra. Los protagonistas caen en una zona de aguas someras en las que caminan por las aguas sin necesidad de nadar. El planeta sería aburrido si no fuera por la presencia periódica de enormes olas (tsunamis que dejan al de Lo Imposible de Juan Antonio Bayona en una marejadilla).

¿Por qué hay enormes tsunamis? La verdad, al ver la película en el cine pensé que, como el agujero negro produce fuerzas de marea gravitatoria en el planeta y Ellos (o Thorne) han decidido que el público no lo va a entender, lo mejor es ilustrarlas con tsunamis (que además de quedar muy bonitos aportan un toque de acción para el cowboy Cooper). Por supuesto, esto no tiene ningún sentido físico. ¿Pueden las fuerzas marea gravitatorias ser tan intensas para producir enormes tsunamis sin destruir el planeta?

Volviendo a la física de los agujeros negros, en mi opinión, el momento más interesante de la física de la película, y donde mejor se ve la mano de Thorne, es en la ilustración del concepto de dilatación temporal gravitatoria en el planeta Miller. Según el guión, una hora en Miller equivale a 7 años lejos del planeta (en la nave nodriza Endurance). Gracias a este guiño podemos estimar las propiedades del agujero negro Gargantúa.

Dibujo20141109 professor Brand black board - interstellar movie

Esta pizarra del profesor Brand está extraída de la web de la película Interstellar. Claramente se observa la métrica de Kerr para una agujero negro en rotación y el correspondiente diagrama de Penrose.

Dibujo20141109 kerr metric for kerr black hole - interstellar movie

En esta métrica (con G = 1) el momento angular J está normalizado como a = J/(M c). Sin entrar en detalles técnicos, el efecto de la dilatación temporal es

Dibujo20141109 time dilation - gravitation kerr metric - interstellar movie

Para que dτ = 1 hora, mientras que dt = 7 años se tiene que cumplir que (fuente)

Dibujo20141109 formula black hole time dilation Miller planet - interstellar movie

Para un agujero negro de 100 millones de masas solares se obtiene

Dibujo20141109 parameters formula black hole time dilation Miller planet - interstellar movie

¿Puede un planeta presentar una órbita estable a esta distancia? La respuesta la ofrecen J. M. Bardeen, W. H. Press, S. A. Teukolsky, “Rotating Black Holes: Locally Nonrotating Frames, Energy Extraction, and Scalar Synchrotron Radiation,” Astrophysical Journal 178: 347-370, 1972. Cuando el momento angular es máximo (a = M) hay órbitas estables que rotan en el mismo sentido que el agujero negro a partir de una distancia de Rs/2 (donde Rs es el radio de Schwarzschild) y que rotan en sentido opuesto a partir de 9 Rs/2. En el caso de Gargantúa (aM), la órbita del planeta puede ser estable (como cabe suponer sabiendo que Thorne es productor ejecutivo de la película).

Otra cuestión clave es la estabilidad del propio planeta debido al límite de Roche y al efecto de las fuerzas de marea gravitatoria (tidal forces). Este cálculo en relatividad general para un agujero negro de Kerr es muy complicado. El límite de Roche calculado con física newtoniana no tiene en cuenta la contribución a la gravedad de la presión de la materia (recuerda que la presión forma parte del tensor energía-momento y por tanto es fuente de la gravedad). Un cálculo teórico indica que una supertierra con una gravedad superficial de 130% la de la Tierra (unos 12,75 m/s²) podría ser estable (basta usar la fórmula (191) del artículo de Masaki Ishii, Masaru Shibata, Yasushi Mino, “Black hole tidal problem in the Fermi normal coordinates,” Phys. Rev. D 71: 044017, 2005; arXiv:gr-qc/0501084). Hemos de suponer que, de nuevo, Thorne conoce estos resultados y los ha usado para calcular las propiedades del planeta Miller; quizás, incluso, los ha mejorado.

¿Tienen sentido los tsunamis que se observan en el planeta Miller? La respuesta trivial es que las fuerzas de marea gravitacionales sobre una supertierra debidas a un agujero negro de cien millones de masas solares en rotación rápida son demasiado pequeñas para explicar los tsunamis. Sin embargo, esta respuesta no es del todo satisfactoria. Lo correcto sería usar la hidrodinámica relativista (Eric Gourgoulhon, “An introduction to relativistic hydrodynamics,” arXiv:gr-qc/0603009). A priori se puede usar la aproximación de aguas someras (shallow water) para las ecuaciones de Navier-Stokes en el contexto de la teoría de la relatividad. Lo poco que he leído de hidrodinámica relativista no discute el efecto de las fuerzas de marea gravitatorias producidas por un agujero negro en rotación (solución de Kerr) sobre las ecuaciones de aguas someras y la posible producción de mareas enormes similares a tsunamis. La mayoría de los artículos se centran en la magnetohidrodinámica del colapso gravitatorio. En mi opinión no es fácil extender estos resultados al caso de la producción de enormes tsunamis.

Lo más incomprensible del disco de acreción de Gargantúa es la fuente de la materia de dicho disco. Quizás hay una compañera, una estrella que no se observa en la película y que ilumina a los planetas (parecen muy luminosos). La materia del disco se acelera al acercarse al horizonte de sucesos, calentándose y emitiendo fuerte radiación (rayos X, radiación infrarroja y ondas de radio). Por cierto, la radiación de Hawking es despreciable porque la temperatura de un agujero negro supermasivo como Gargantúa es ridícula (unos 5 × 10–60 K). Esta radiación no se observa en la película pero podría afectar a los planetas e impedir su habitabilidad (que la película asume para el planeta Edmunds).

Dibujo20141109 Kerr Black Hole Schematic- interstellar movie

Algunos lectores de este blog me han preguntado por lo que le puede pasar a Cooper (o a algún objeto) al penetrar dentro del horizonte de sucesos de un agujero negro como Gargantúa. ¿Podría sobrevivir Cooper a la singularidad del agujero negro? En principio, lejos de la singularidad las fuerzas de marea (responsables de la espaguetización) se pueden soportar, pero crecen sin límite conforme nos acercamos a ella. En el caso de la solución de Kerr la singularidad tiene forma anular, pero no parece razonable que una persona pueda sobrevivir en su entorno. Por supuesto, si Ellos son capaces de crear agujeros de gusano intergalácticos, también serán capaces de protegerle del intenso campo gravitatorio y de la espaguetización.

Cooper en el interior de Gargantúa usa curvas espaciotemporales cerradas para comunicarse con su hija. ¿Hay este tipo de curvas en el interior del agujero negro de Kerr? Sí, las hay, pero no son estables. Quizás Ellos, capaces de estabilizar un agujero de gusano, también son capaces de estabilizar estas curvas espaciotemporales cerradas. En cualquier caso, se trata de pura especulación. El guión se permite licencias literarias, muy al estilo de Nolan, cuya física no podemos comentar.

Por último, ¿podrían ser necesarios “datos cuánticos” para entender la gravedad cuántica? Quien sabe, quizás sí, quizás no. El profesor Brand y Murph parecen haber desarrollado una teoría cuántica de la gravedad con ciertos parámetros libres; quizás la única manera de concretar estos valores es obtener ciertos datos cuánticos cerca de la singularidad de un agujero negro de Kerr. Obviamente esto es pura especulación. De nuevo la historia al estilo de Nolan marca la física y no al revés.

En resumen, no te quiero aburrir más, Interstellar es una película muy útil para ilustrar la dilatación temporal gravitatoria y los agujeros negros en rotación de Kerr. Más allá hay muchos elementos que no parecen físicamente correctos. ¿Pero importa? Ellos están en la película para permitir todo tipo de violaciones de la física siempre y cuando la tensión argumental crezca gracias a ello. Si no has visto la película, a qué esperas. Si ya la has visto, quizás sea un buen momento para plantearte volver a verla.

PS 23 Nov 2014: Kip Thorne considera que el mayor fallo científico de la película son las nubes de hielo del planeta Mann. Más información en El Becario, “Kip Thorne habla sobre la ciencia en Interstellar,” Código Espagueti, 16 Nov 2104 (gracias Alejandro González ‏@Evocid por el enlace en Tweeter)

121 Comentarios

Participa Suscríbete

axelaxel

Genial,sencillamente genial,gracias a C.Nolan una vez mas!!!Hace mucho que no veia una pelicula de ciencia ficcion con tanto peso…

CarlosCarlos

Yo apenas vi la pelicula, me pregunté si era posible que sucediera lo de las nubes, dije en mi cabeza que era imposible, y un toque algo ridiculo

jocabedjocabed

Hola, en mi opinion es una manera para la gente que no tiene mucho conocimiento sobre el área puede entender el concepto sobre travesías espacio tiempo y conocer de una manera mas amigable la física. Me gustó la peculiaridad en como utilizaron la paradoja de los gemelos. Aunque yo no creía que fuera posible lo relacionado con el planeta Miller en cuanto a una hora fueran 7 años, sin embargo con la explicación y las teorías que respaldan lo referente a lo del horizonte de sucesos se hace mas creible ese calculo. En resumen un buen artículo para una película que vale la pena volver a ver.

AdriAdri

Hola he estado buscando un libro que trata sobre una chica creo que se llama Ana o algo asi, que es maestra o estudiante de física y se apasiona tanto en su trabajo que su novio rompe con ella por no tener tiempo para el, ella se centra aun mas en su investigacion que termina enamorandose de un agujero de gusano. quisiera saber como se llama y quien es el autor. Si me pueden ayudar se los agradeceria mucho.

PedroPedro

Realmente me encanto la pelicula… se te olvido mencionar la impecable actuación de Anne Hathaway… sin duda alguna es muy buena de hecho tenia años sin ver una pelicula con un guion tan especializado en la fisica de los agujeros negros (aunque no del todo) muy a pesar de lo que podemos cuestionar la fisica en la pelicula en si misma es magnifica! Albert Einstein decia que todo se crea dos veces, primero en la mente y después en la realidad. Si eres capaz de imaginarlo entonces podrás lograrlo. Y tomando eso como base y con la ayuda de Kip Thorne no es tan utopico el enfoque… En definitiva la recomiendo, es una pelicula que quedara para la historia sin duda alguna! saludos…

Francisco

Felicitaciones por el blog. Me gustaría comentar otra escena de la película. Cuando la nave está girando sin control sobre sí misma, por la explosión provocada al intentar acoplarse la primera lanzadera, Cooper tras acoplarse intentará controlar la nave con la ayuda de su robot. El robot, al ver la situación, le dirá que es imposible, no sabe cómo hacerlo, su red neuronal artificial no está preparada para ello. Necesita aprender y lo hará con otra red neuronal, esta vez humana. Entonces Cooper le contesta con una frase memorable , “No es imposible, es necesario”, le hará calcular la rotación de la nave y a la vez la hará sincronizar la de la lanzadera y entonces hará el acoplamiento una vez que nave y lanzadera giren con sincronía. Un saludo cordial desde Finlandia.

YelenaYelena

Hola, acabo de ver esta película y en general puedo decir que me ha parecido una buena película, pese a las incongruencias que aun, en mi completa ignorancia sobre física, he podido detectar. Con las explicaciones de este artículo la sensación de confusión que me ha creado las últimas etapas de la película se ha disipado un poco. Pero hay algo que todavía no logro comprender, no se si la duda resulta muy tonta, pero…¿Qué pasa con aquello de la resolución de la ecuación? hasta donde entendí, la ecuación fue resuelta pero aun así no era posible llevar a cabo el plan A…¿Por qué entonces, después Cooper le da a su hija la respuesta a la ecuación y así ella salva a la humanidad?

JuancarJuancar

Cooper obtiene los datos que hay dentro de la singularidad del agujero negro cuando está dentro del teseracto y logra transmitir esos datos a su hija a través del reloj. esos datos son la pieza que faltaba para completar la ecuación del profesor Brand y poder dominar la gravedad. Si te das cuenta al final de la película están en una estación espacial de dimensiones gigantescas y forma cilíndrica que da a entender que el ser humano ya es capaz de dominar la gravedad y por lo tanto pueden salvar a la humanidad. Intentar transportar a todos los humanos de manera convencional, es decir a base de naves con combustible es imposible, por eso se necesitaba dominar la gravedad y lo consiguen gracias a la ecuación que completa Murph con los datos que le pasa Cooper. Se da a entender también que hay mas estaciones espaciales iguales, ya que Murph ya anciana viaja de una a otra para encontrarse con su padre.

Con respecto al momento que Cooper está en el teseracto es difícil de entender si no estás familiarizado con ese concepto, pero me parece un gran acierto como lo han plasmado en la película.
Entender exactamente qué es un teseracto es complejo, básicamente porque nunca vamos a poder verlo, como mucho imaginarlo. Recibe también el nombre de Hipercubo y un teseracto es a un cubo esencialmente lo que un cubo es a un cuadrado. La misma forma, pero con una dimensión extra. es decir un cubo con 4 dimensiones las tres dimensiones físicas que conocemos mas una dimensión extra que sería el tiempo.

En Interstellar, se hace referencia a que técnicamente un hipercubo o teseracto es un cubo desfasado en el tiempo. Dicho de otro modo, abarca cada uno de los instantes de tiempo en los que está pero al mismo todos ellos juntos. por tanto ahí es donde están ocurriendo varios momentos en puntos separados de la historia pero al mismo tiempo todos a la vez, posibilitando que Cooper pueda comunicarse con Murph con los libros de la habitación y con el reloj.

La película me encantó, la he visto varias veces y me parece la mejor película de ciencia ficción de los últimos años con diferencia.

AntonioAntonio

Puedo entender licencias poeticas para hacer atractivo el guion, pero no me gusta la constante alusion a Ellos …como en su dia se hizo con El…. casi prefiero aludir a una ignota Ley General (que aun no hemos encontrado) o explicado de forma coherente….. por lo demas ..hay mas ciencia que en la mayoria de las peliculas

JuancarJuancar

Ellos somos nosotros en el futuro. Al principio de la película se les llama así porque desconocemos quienes son. Creo que eligieron ese término para que el espectador especulara con la posibilidad de que fueran una civilización extraterrestre mucho más avanzados que nosotros que nos estaban ayudando. Pero al final de la película se entiende que “Ellos” son los humanos del futuro que han sido capaces de dominar esa quinta dimensión que sería la gravedad y pusieron el agujero de gusano cerca de la órbita de Saturno para que todo sucediera como sucedió.

IñigoIñigo

Echo en falta alguna referencia a cita con rama. Sin duda el final está totalmente inspirado

Deja un comentario

Tu email nunca será mostrado o compartido. No olvides rellenar los campos obligatorios.

Obligatorio
Obligatorio
Obligatorio

Puedes usar las siguientes etiquetas y atributos HTML: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>