Todo el mundo conoce la fórmula para las dos raíces de un polinomio cuadrático. Casi todo el mundo ignora la fórmula para las tres raíces de un polinomio cúbico. Hace años, yo adjuntaba ciertos exámenes con dicha fórmula (y la del polinomio cuártico) para que los alumnos pudieran usarla, caso necesario, sin recordarla de memoria. Pocos alumnos se atrevían con el problema (si lo había) que requería su uso. Obviamente, ya dejé de hacerlo hace años. Hoy en día cualquiera puede recurrir a Mathematica, Maple, Matlab, etc. que la recuerda por nosotros.
Ahora bien, también hay frikis (o geeks) a los que les gustaría presumir de que recuerdan dicha fórmula. Hay varias reglas nemotécnicas, pero quizás la mejor que yo conozco ha sido obtenida por Andreas Caicedo. Una regla nemotécnica que desarrollada conduce a la fórmula usual que aparece en todos los libros de tablas matemáticas. La he visto en Alexandre Borovik, «Andreas Caicedo: the best way of remembering the cubic formula,» Mathematics under the Microscope, May 4, 2010.
Al grano que estarás impaciente (si no has abandonado el blog o has pasado a otra entrada).
Mediante una traslación el polinomio
,
se puede transformar en el polinomio
,
que podemos reescalar para que tome la forma
,
que será verdad cuando
,
si y sólo si
.
La fórmula de Euler permite obtener la solución ya que
, con ,
es raíz de la ecuación cuadrática
,
por lo que
es la raíz cúbica
,
y finalmente
.
That’s all folks!
Esta entrada iba a ser mi participación en la V Edición del Carnaval de Matemáticas, cuyo anfitrión era el blog Ciencia por Barcedavid. Pero al final se me pasó el deadline. No sé si se organizará la VI Edición del Carnaval de Matemáticas. En su caso, quien la organice que tome esta entrada como mi participación en el mismo.
Te va a gustar este texto.
Tomamos nota. Somos los anfitriones de la VI edición del Carnaval de matemáticas y la anotamos como una de las entradas participantes.
Si te animas a participar con más eres más que bien recibido.
Un saludo,
El equipo de Sangakoo
Gracias, equipo de Sangakoo.
Recuerdo a todos que Tito Eliatron anunció que el VI Carnaval de Matemáticas viajará a Barcelona, donde el Blog de Sangakoo será el anfitrión de esta edición. Los interesados en contribuir pueden ponerse en contacto con ellos o hacerlo directamente desde el blog del Carnaval.
Ánimo a todos, que contribuir es gratis.